
Trust Region Policy Optimization

Desiderata

Desiderata for policy optimization method:

I Stable, monotonic improvement. (How to choose stepsizes?)

I Good sample efficiency

Step Sizes

Why are step sizes a big deal in RL?

I Supervised learning
I Step too far → next updates will fix it

I Reinforcement learning
I Step too far → bad policy
I Next batch: collected under bad policy
I Can’t recover, collapse in performance!

Surrogate Objective

I Let η(π) denote the expected return of π

I We collect data with πold. Want to optimize some objective to get a new
policy π

I Define Lπold(π) to be the “surrogate objective”1

L(π) = Eπold

[
π(a | s)

πold(a | s)
Aπold(s, a)

]

∇θL(πθ)
∣∣
θold

= ∇θη(πθ)
∣∣
θold

(policy gradient)

I Local approximation to the performance of the policy; does not depend on
parameterization of π

1S. Kakade and J. Langford. “Approximately optimal approximate reinforcement learning”. In: ICML. vol. 2. 2002, pp. 267–274.

Improvement Theory

I Theory: bound the difference between Lπold(π) and η(π), the performance of
the policy

I Result: η(π) ≥ Lπold(π)− C ·maxs KL[πold(· | s), π(· | s)], where
c = 2εγ/(1− γ)2

I Monotonic improvement guaranteed (MM algorithm)

Practical Algorithm: TRPO

I Constrained optimization problem

max
π

L(π), subject to KL[πold, π] ≤ δ

where L(π) = Eπold

[
π(a | s)

πold(a | s)
Aπold(s, a)

]

I Construct loss from empirical data

L̂(π) =
N∑

n=1

π(an | sn)

πold(an | sn)
Ân

I Make quadratic approximation and solve with conjugate gradient algorithm

J. Schulman, S. Levine, P. Moritz, et al. “Trust Region Policy Optimization”. In: ICML. 2015

Practical Algorithm: TRPO

for iteration=1, 2, . . . do
Run policy for T timesteps or N trajectories
Estimate advantage function at all timesteps
Compute policy gradient g
Use CG (with Hessian-vector products) to compute F−1g
Do line search on surrogate loss and KL constraint

end for

J. Schulman, S. Levine, P. Moritz, et al. “Trust Region Policy Optimization”. In: ICML. 2015

Practical Algorithm: TRPO

Applied to

I Locomotion controllers in 2D

I Atari games with pixel input

J. Schulman, S. Levine, P. Moritz, et al. “Trust Region Policy Optimization”. In: ICML. 2015

“Proximal” Policy Optimization

I Use penalty instead of constraint

minimize
θ

N∑

n=1

πθ(an | sn)

πθold(an | sn)
Ân − βKL[πθold , πθ]

I Pseudocode:

for iteration=1, 2, . . . do
Run policy for T timesteps or N trajectories
Estimate advantage function at all timesteps
Do SGD on above objective for some number of epochs
If KL too high, increase β. If KL too low, decrease β.

end for

I ≈ same performance as TRPO, but only first-order optimization

“Proximal” Policy Optimization

I Use penalty instead of constraint

minimize
θ

N∑

n=1

πθ(an | sn)

πθold(an | sn)
Ân − βKL[πθold , πθ]

I Pseudocode:

for iteration=1, 2, . . . do
Run policy for T timesteps or N trajectories
Estimate advantage function at all timesteps
Do SGD on above objective for some number of epochs
If KL too high, increase β. If KL too low, decrease β.

end for

I ≈ same performance as TRPO, but only first-order optimization

“Proximal” Policy Optimization

I Use penalty instead of constraint

minimize
θ

N∑

n=1

πθ(an | sn)

πθold(an | sn)
Ân − βKL[πθold , πθ]

I Pseudocode:

for iteration=1, 2, . . . do
Run policy for T timesteps or N trajectories
Estimate advantage function at all timesteps
Do SGD on above objective for some number of epochs
If KL too high, increase β. If KL too low, decrease β.

end for

I ≈ same performance as TRPO, but only first-order optimization

Variance Reduction Using Value Functions

Variance Reduction

I Now, we have the following policy gradient formula:

∇θEτ [R] = Eτ

[
T−1∑

t=0

∇θ log π(at | st , θ)Aπ(st , at)

]

I Aπ is not known, but we can plug in Ât , an advantage estimator

I Previously, we showed that taking

Ât = rt + rt+1 + rt+2 + · · · − b(st)

for any function b(st), gives an unbiased policy gradient estimator.
b(st) ≈ V π(st) gives variance reduction.

The Delayed Reward Problem

I With policy gradient methods, we are confounding the effect of multiple
actions:

Ât = rt + rt+1 + rt+2 + · · · − b(st)

mixes effect of at , at+1, at+2, . . .

I SNR of Ât scales roughly as 1/T
I Only at contributes to signal Aπ(st , at), but at+1, at+2, . . . contribute to

noise.

Variance Reduction with Discounts
I Discount factor γ, 0 < γ < 1, downweights the effect of rewars that are far

in the future—ignore long term dependencies

I We can form an advantage estimator using the discounted return:

Âγt = rt + γrt+1 + γ2rt+2 + . . .︸ ︷︷ ︸
discounted return

−b(st)

reduces to our previous estimator when γ = 1.

I So advantage has expectation zero, we should fit baseline to be discounted
value function

V π,γ(s) = Eτ
[
r0 + γr1 + γ2r2 + . . . | s0 = s

]

I Discount γ is similar to using a horizon of 1/(1− γ) timesteps

I Âγt is a biased estimator of the advantage function

Value Functions in the Future

I Baseline accounts for and removes the effect of past actions

I Can also use the value function to estimate future rewards

rt + γV (st+1) cut off at one timestep

rt + γrt+1 + γ2V (st+2) cut off at two timesteps

. . .

rt + γrt+1 + γ2rt+2 + . . . ∞ timesteps (no V)

Value Functions in the Future

I Subtracting out baselines, we get advantage estimators

Â
(1)
t = rt + γV (st+1)−V (st)

Â
(2)
t = rt + rt+1 + γ2V (st+2)−V (st)

. . .

Â
(∞)
t = rt + γrt+1 + γ2rt+2 + . . .−V (st)

I Â
(1)
t has low variance but high bias, Â

(∞)
t has high variance but low bias.

I Using intermediate k (say, 20) gives an intermediate amount of bias and variance

Finite-Horizon Methods: Advantage Actor-Critic

I A2C / A3C uses this fixed-horizon advantage estimator

I Pseudocode

for iteration=1, 2, . . . do
Agent acts for T timesteps (e.g., T = 20),
For each timestep t, compute

R̂t = rt + γrt+1 + · · ·+ γT−t+1rT−1 + γT−tV (st)

Ât = R̂t − V (st)

R̂t is target value function, in regression problem
Ât is estimated advantage function

Compute loss gradient g = ∇θ

∑T
t=1

[
− log πθ(at | st)Ât + c(V (s)− R̂t)

2
]

g is plugged into a stochastic gradient descent variant, e.g., Adam.
end for

V. Mnih, A. P. Badia, M. Mirza, et al. “Asynchronous Methods for Deep Reinforcement Learning”. In: ICML (2016)

Finite-Horizon Methods: Advantage Actor-Critic

I A2C / A3C uses this fixed-horizon advantage estimator

I Pseudocode

for iteration=1, 2, . . . do
Agent acts for T timesteps (e.g., T = 20),
For each timestep t, compute

R̂t = rt + γrt+1 + · · ·+ γT−t+1rT−1 + γT−tV (st)

Ât = R̂t − V (st)

R̂t is target value function, in regression problem
Ât is estimated advantage function

Compute loss gradient g = ∇θ

∑T
t=1

[
− log πθ(at | st)Ât + c(V (s)− R̂t)

2
]

g is plugged into a stochastic gradient descent variant, e.g., Adam.
end for

V. Mnih, A. P. Badia, M. Mirza, et al. “Asynchronous Methods for Deep Reinforcement Learning”. In: ICML (2016)

A3C Video

A3C Results

0 2 4 6 8 10 12 14
Training time (hours)

0

2000

4000

6000

8000

10000

12000

14000

16000

S
co

re

Beamrider

DQN
1-step Q
1-step SARSA
n-step Q
A3C

0 2 4 6 8 10 12 14
Training time (hours)

0

100

200

300

400

500

600

S
co

re

Breakout

DQN
1-step Q
1-step SARSA
n-step Q
A3C

0 2 4 6 8 10 12 14
Training time (hours)

30

20

10

0

10

20

30

S
co

re

Pong

DQN
1-step Q
1-step SARSA
n-step Q
A3C

0 2 4 6 8 10 12 14
Training time (hours)

0

2000

4000

6000

8000

10000

12000

S
co

re

Q*bert

DQN
1-step Q
1-step SARSA
n-step Q
A3C

0 2 4 6 8 10 12 14
Training time (hours)

0

200

400

600

800

1000

1200

1400

1600

S
co

re

Space Invaders

DQN
1-step Q
1-step SARSA
n-step Q
A3C

TD(λ) Methods: Generalized Advantage Estimation
I Recall, finite-horizon advantage estimators

Â
(k)
t = rt + γrt+1 + · · ·+ γk−1rt+k−1 + γkV (st+k)− V (st)

I Define the TD error δt = rt + γV (st+1)− V (st)

I By a telescoping sum,

Â
(k)
t = δt + γδt+1 + · · ·+ γk−1δt+k−1

I Take exponentially weighted average of finite-horizon estimators:

Âλ = Â
(1)
t + λÂ

(2)
t + λ2Â

(3)
t + . . .

I We obtain

Âλ
t = δt + (γλ)δt+1 + (γλ)2δt+2 + . . .

I This scheme named generalized advantage estimation (GAE) in [1], though versions have
appeared earlier, e.g., [2]. Related to TD(λ)

J. Schulman, P. Moritz, S. Levine, et al. “High-dimensional continuous control using generalized advantage estimation”. In: ICML. 2015

H. Kimura and S. Kobayashi. “An Analysis of Actor/Critic Algorithms Using Eligibility Traces: Reinforcement Learning with Imperfect Value
Function.” In: ICML. 1998, pp. 278–286

Choosing parameters γ, λ

Performance as γ, λ are varied

0 100 200 300 400 500

number of policy iterations

2.5

2.0

1.5

1.0

0.5

0.0

co
st

3D Biped

γ=0.96,λ=0.96

γ=0.98,λ=0.96

γ=0.99,λ=0.96

γ=0.995,λ=0.92

γ=0.995,λ=0.96

γ=0.995,λ=0.98

γ=0.995,λ=0.99

γ=0.995,λ=1.0

γ=1,λ=0.96

γ=1, No value fn

TRPO+GAE Video

Pathwise Derivative Policy Gradient Methods

Deriving the Policy Gradient, Reparameterized

I Episodic MDP:

θ

s1 s2 . . . sT

a1 a2 . . . aT

RT

Want to compute ∇θE [RT]. We’ll use ∇θ log π(at | st ; θ)

I Reparameterize: at = π(st , zt ; θ). zt is noise from fixed distribution.

I Only works if P(s2 | s1, a1) is known _̈

Deriving the Policy Gradient, Reparameterized
I Episodic MDP:

θ

s1 s2 . . . sT

a1 a2 . . . aT

RT

Want to compute ∇θE [RT]. We’ll use ∇θ log π(at | st ; θ)
I Reparameterize: at = π(st , zt ; θ). zt is noise from fixed distribution.

θ

s1 s2 . . . sT

a1 a2 . . . aT

z1 z2 . . . zT

RT

I Only works if P(s2 | s1, a1) is known _̈

Deriving the Policy Gradient, Reparameterized
I Episodic MDP:

θ

s1 s2 . . . sT

a1 a2 . . . aT

RT

Want to compute ∇θE [RT]. We’ll use ∇θ log π(at | st ; θ)
I Reparameterize: at = π(st , zt ; θ). zt is noise from fixed distribution.

θ

s1 s2 . . . sT

a1 a2 . . . aT

z1 z2 . . . zT

RT

I Only works if P(s2 | s1, a1) is known _̈

Using a Q-function

θ

s1 s2 . . . sT

a1 a2 . . . aT

z1 z2 . . . zT

RT

d

dθ
E [RT] = E

[
T∑

t=1

dRT

dat

dat
dθ

]
= E

[
T∑

t=1

d

dat
E [RT | at]

dat
dθ

]

= E

[
T∑

t=1

dQ(st , at)

dat

dat
dθ

]
= E

[
T∑

t=1

d

dθ
Q(st , π(st , zt ; θ))

]

SVG(0) Algorithm

I Learn Qφ to approximate Qπ,γ, and use it to compute gradient estimates.

I Pseudocode:

for iteration=1, 2, . . . do
Execute policy πθ to collect T timesteps of data
Update πθ using g ∝ ∇θ

∑T
t=1Q(st , π(st , zt ; θ))

Update Qφ using g ∝ ∇φ

∑T
t=1(Qφ(st , at)− Q̂t)

2, e.g. with TD(λ)
end for

N. Heess, G. Wayne, D. Silver, et al. “Learning continuous control policies by stochastic value gradients”. In: NIPS. 2015

SVG(0) Algorithm

I Learn Qφ to approximate Qπ,γ, and use it to compute gradient estimates.

I Pseudocode:

for iteration=1, 2, . . . do
Execute policy πθ to collect T timesteps of data
Update πθ using g ∝ ∇θ

∑T
t=1Q(st , π(st , zt ; θ))

Update Qφ using g ∝ ∇φ

∑T
t=1(Qφ(st , at)− Q̂t)

2, e.g. with TD(λ)
end for

N. Heess, G. Wayne, D. Silver, et al. “Learning continuous control policies by stochastic value gradients”. In: NIPS. 2015

SVG(1) Algorithm

θ

s1 s2 . . . sT

a1 a2 . . . aT

z1 z2 . . . zT

RT

I Instead of learning Q, we learn

I State-value function V ≈ V π,γ

I Dynamics model f , approximating st+1 = f (st , at) + ζt

I Given transition (st , at , st+1), infer ζt = st+1 − f (st , at)

I Q(st , at) = E [rt + γV (st+1)] = E [rt + γV (f (st , at) + ζt)], and at = π(st , θ, ζt)

SVG(∞) Algorithm

θ

s1 s2 . . . sT

a1 a2 . . . aT

z1 z2 . . . zT

RT

I Just learn dynamics model f

I Given whole trajectory, infer all noise variables

I Freeze all policy and dynamics noise, differentiate through entire deterministic
computation graph

SVG Results

I Applied to 2D robotics tasks

I Overall: different gradient estimators behave similarly

N. Heess, G. Wayne, D. Silver, et al. “Learning continuous control policies by stochastic value gradients”. In: NIPS. 2015

Deterministic Policy Gradient

I For Gaussian actions, variance of score function policy gradient estimator goes to
infinity as variance goes to zero

I But SVG(0) gradient is fine when σ → 0

∇θ
∑

t

Q(st , π(st , θ, ζt))

I Problem: there’s no exploration.

I Solution: add noise to the policy, but estimate Q with TD(0), so it’s valid
off-policy

I Policy gradient is a little biased (even with Q = Qπ), but only because state
distribution is off—it gets the right gradient at every state

D. Silver, G. Lever, N. Heess, et al. “Deterministic policy gradient algorithms”. In: ICML. 2014

Deep Deterministic Policy Gradient
I Incorporate replay buffer and target network ideas from DQN for increased

stability

I Use lagged (Polyak-averaging) version of Qφ and πθ for fitting Qφ (towards
Qπ,γ) with TD(0)

Q̂t = rt + γQφ′(st+1, π(st+1; θ′))

I Pseudocode:

for iteration=1, 2, . . . do
Act for several timesteps, add data to replay buffer
Sample minibatch
Update πθ using g ∝ ∇θ

∑T
t=1 Q(st , π(st , zt ; θ))

Update Qφ using g ∝ ∇φ

∑T
t=1(Qφ(st , at)− Q̂t)

2,
end for

T. P. Lillicrap, J. J. Hunt, A. Pritzel, et al. “Continuous control with deep reinforcement learning”. In: ICLR (2015)

Deep Deterministic Policy Gradient
I Incorporate replay buffer and target network ideas from DQN for increased

stability

I Use lagged (Polyak-averaging) version of Qφ and πθ for fitting Qφ (towards
Qπ,γ) with TD(0)

Q̂t = rt + γQφ′(st+1, π(st+1; θ′))

I Pseudocode:

for iteration=1, 2, . . . do
Act for several timesteps, add data to replay buffer
Sample minibatch
Update πθ using g ∝ ∇θ

∑T
t=1 Q(st , π(st , zt ; θ))

Update Qφ using g ∝ ∇φ

∑T
t=1(Qφ(st , at)− Q̂t)

2,
end for

T. P. Lillicrap, J. J. Hunt, A. Pritzel, et al. “Continuous control with deep reinforcement learning”. In: ICLR (2015)

Deep Deterministic Policy Gradient
I Incorporate replay buffer and target network ideas from DQN for increased

stability

I Use lagged (Polyak-averaging) version of Qφ and πθ for fitting Qφ (towards
Qπ,γ) with TD(0)

Q̂t = rt + γQφ′(st+1, π(st+1; θ′))

I Pseudocode:

for iteration=1, 2, . . . do
Act for several timesteps, add data to replay buffer
Sample minibatch
Update πθ using g ∝ ∇θ

∑T
t=1 Q(st , π(st , zt ; θ))

Update Qφ using g ∝ ∇φ

∑T
t=1(Qφ(st , at)− Q̂t)

2,
end for

T. P. Lillicrap, J. J. Hunt, A. Pritzel, et al. “Continuous control with deep reinforcement learning”. In: ICLR (2015)

DDPG Results

Applied to 2D and 3D robotics tasks and driving with pixel input

T. P. Lillicrap, J. J. Hunt, A. Pritzel, et al. “Continuous control with deep reinforcement learning”. In: ICLR (2015)

Policy Gradient Methods: Comparison

I Two kinds of policy gradient estimator
I REINFORCE / score function estimator: ∇ log π(a | s)Â.

I Learn Q or V for variance reduction, to estimate Â
I Pathwise derivative estimators (differentiate wrt action)

I SVG(0) / DPG: d
daQ(s, a) (learn Q)

I SVG(1): d
da (r + γV (s ′)) (learn f ,V)

I SVG(∞): d
dat

(rt + γrt+1 + γ2rt+2 + . . .) (learn f)

I Pathwise derivative methods more sample-efficient when they work (maybe),
but work less generally due to high bias

Policy Gradient Methods: Comparison

Y. Duan, X. Chen, R. Houthooft, et al. “Benchmarking Deep Reinforcement Learning for Continuous Control”. In: ICML (2016)

Stochastic Computation Graphs

Gradients of Expectations
Want to compute ∇θE [F]. Where’s θ?

I In distribution, e.g., Ex∼p(· | θ) [F (x)]

I ∇θEx [f (x)] = Ex [f (x)∇θ log px(x ; θ)] .
I Score function estimator
I Example: REINFORCE policy gradients, where x is the trajectory

I Outside distribution: Ez∼N (0,1) [F (θ, z)]

∇θEz [f (x(z , θ))] = Ez [∇θf (x(z , θ))] .

I Pathwise derivative estimator
I Example: SVG policy gradient

I Often, we can reparametrize, to change from one form to another

I What if F depends on θ in complicated way, affecting distribution and F?

M. C. Fu. “Gradient estimation”. In: Handbooks in operations research and management science 13 (2006), pp. 575–616

Stochastic Computation Graphs

I Stochastic computation graph is a DAG, each node corresponds to a
deterministic or stochastic operation

I Can automatically derive unbiased gradient estimators, with variance
reduction

John Schulman1, Nicolas Heess2, Théophane Weber2, Pieter Abbeel1
1University of California, Berkeley 2Google DeepMind

Generalize backpropagation to deal with random variables
that we can’t differentiate through.
Why can’t we differentiate through them?

Gradient Estimation Using Stochastic Computation Graphs

1) discrete random variables
2) unmodeled external world, in RL / control

Computation Graphs Stochastic Computation Graphs

stochastic node

Motivation / Applications

policy gradients in

reinforcement learning

variational inference

(hard) attention models

(hard) memory read/write

✓

s1 s2 . . . sT

a1 a2 . . . aT

r1 r2 . . . rT

distribution is different from the distribution we are evaluating: for parameter ✓ 2 ⇥, ✓ = ✓old is
used for sampling, but we are evaluating at ✓ = ✓new.

Ev�c | ✓new
[ĉ] = Ev�c | ✓old

2
664ĉ

Y

v�c,

✓�Dv

Pv(v | DEPSv\✓, ✓new)

Pv(v | DEPSv\✓, ✓old)

3
775 (17)

 Ev�c | ✓old

2
664ĉ

0
BB@log

0
BB@
Y

v�c,

✓�Dv

Pv(v | DEPSv\✓, ✓new)

Pv(v | DEPSv\✓, ✓old)

1
CCA+ 1

1
CCA

3
775 (18)

where the second line used the inequality x � log x + 1, and the sign is reversed since ĉ is negative.
Summing over c 2 C and rearranging we get

ES | ✓new

"X

c2C
ĉ

#
 ES | ✓old

"X

c2C
ĉ +

X

v2S
log

✓
p(v | DEPSv\✓, ✓new)

p(v | DEPSv\✓, ✓old)

◆
Q̂v

#
(19)

= ES | ✓old

"X

v2S
log p(v | DEPSv\✓, ✓new)Q̂v

#
+ const (20)

Equation (20) allows for majorization-minimization algorithms (like the EM algorithm) to be used
to optimize with respect to ✓. In fact, similar equations have been derived by interpreting rewards
(negative costs) as probabilities, and then taking the variational lower bound on log-probability (e.g.,
[24]).

C Examples
C.1 Generalized EM Algorithm and Variational Inference.

The generalized EM algorithm maximizes likelihood in a probabilistic model with latent variables
[18]. Suppose the probabilistic model defines a probability distribution p(x, z; ✓) where x is ob-
served, z is a latent variable, and ✓ is a parameter of the distribution. The generalized EM algorithm
maximizes the variational lower bound, which is defined by an expectation over q:

L(✓, q) = Ez⇠q

log

✓
p(x, z; ✓)

q(z)

◆�
. (21)

The generalized EM algorithm can take many different forms, leading to different gradient estima-
tion problems.

x h1 h2 h3

r1 r2 r3

�1 �2 �3

✓1 ✓2 ✓3

Neural variational inference. [14] propose a general-
ized EM algorithm for multi-layered latent variable mod-
els such as sigmoidal belief networks that employs an in-
ference network, an explicit parameterization of q as a
function of the observed data x, to allow for fast approx-
imate inference. The generative model and inference net-
work take the form

p✓(x) =
X

h1,h2

p✓1(x|h1)p✓2(h1|h2)p✓3(h2)

q�(h1, h2|x) = q�1
(h1|x)q�2

(h2|h1),

and thus

L(✓,�) = Eh⇠q�

2
6664log

p✓1(x|h1)

q�1
(h1|x)| {z }

=r1

+ log
p✓2(h1|h2)p✓3(h2)

q�2
(h2|h1)| {z }

=r2

3
7775 .

11

x h1
. . . hN Generative model

x h1
. . . hN Inference model

x

ystochastic

stochastic

Figure 1: Stochastic Feedforward Neural Networks. Left: Network diagram. Red nodes are stochastic and
binary, while the rest of the hiddens are deterministic sigmoid nodes. Right: motivation as to why multimodal
outputs are needed. Given the top half of the face x, the mouth in y can be different, leading to different
expressions.

the mean-field approximation was proposed in [4] to improve the learning of SBNs. A drawback
of the variational approach is that, similar to Gibbs, it has to cycle through the hidden nodes one
at a time. Moreover, beside the standard mean-field variational parameters, additional parameters
must be introduced to lower-bound an intractable term that shows up in the expected free energy,
making the lower-bound looser. Gaussian fields are used in [5] for inference by making Gaussian
approximations to units’ input, but there is no longer a lower bound on the likelihood.

In this paper, we introduce the Stochastic Feedforward Neural Network (SFNN) for modeling con-
ditional distributions p(y|x) over continuous real-valued Y output space. Unlike SBNs, to better
model continuous data, SFNNs have hidden layers with both stochastic and deterministic units. The
left panel of Fig. 1 shows a diagram of SFNNs with multiple hidden layers. Given an input vector x,
different states of the stochastic units can generates different modes in Y . For learning, we present
a novel Monte Carlo variant of the Generalized Expectation Maximization algorithm. Importance
sampling is used for the E-step for inference, while error backpropagation is used by the M-step
to improve a variational lower bound on the data log-likelihood. SFNNs have several attractive
properties, including:
• We can draw samples from the exact model distribution without resorting to MCMC.
• Stochastic units form a distributed code to represent an exponential number of mixture compo-

nents in output space.
• As a directed model, learning does not need to deal with a global partition function.
• Combination of stochastic and deterministic hidden units can be jointly trained using the back-

propagation algorithm, as in standard feed-forward neural networks.

The two main alternative models are Conditional Gaussian Restricted Boltzmann Machines (C-
GRBMs) [6] and Mixture Density Networks (MDNs) [1]. Note that Gaussian Processes [7] and
Gaussian Random Fields [8] are unimodal and therefore incapable of modeling a multimodal Y .
Conditional Random Fields [9] are widely used in NLP and vision, but often assume Y to be dis-
crete rather than continuous. C-GRBMs are popular models used for human motion modeling [6],
structured prediction [10], and as a higher-order potential in image segmentation [11]. While C-
GRBMs have the advantage of exact inference, they are energy based models that define different
partition functions for different input X . Learning also requires Gibbs sampling which is prone to
poor mixing. MDNs use a mixture of Gaussians to represent the output Y . The components’ means,
mixing proportions, and the output variances are all predicted by a MLP conditioned on X . As with
SFNNs, the backpropagation algorithm can be used to train MDNs efficiently. However, the number
of mixture components in the output Y space must be pre-specified and the number of parameters is
linear in the number of mixture components. In contrast, with Nh stochastic hidden nodes, SFNNs
can use its distributed representation to model up to 2Nh mixture components in the output Y .

2 Stochastic Feedforward Neural Networks
SFNNs contain binary stochastic hidden variables h 2 {0, 1}Nh , where Nh is the number of hidden
nodes. For clarity of presentation, we construct a SFNN from a one-hidden-layer MLP by replacing
the sigmoid nodes with stochastic binary ones. Note that other types stochastic units can also be
used. The conditional distribution of interest, p(y|x), is obtained by marginalizing out the latent
stochastic hidden variables: p(y|x) =

P
h p(y,h|x). SFNNs are directed graphical models where

the generative process starts from x, flows through h, and then generates output y. Thus, we can
factorize the joint distribution as: p(y,h|x) = p(y|h)p(h|x). To model real-valued y, we have

2

Amortized inference:

stochastic neural networks

it’s all about gradients of expectations!

General Formula

@

@✓
E

2
64

X

cost node c

c

3
75 =

X

stochastic node x
deterministically
influenced by ✓

0
BBB@
@

@✓
log p(x | parents(x))

X

cost node c
influenced by x

c

1
CCCA +

@

@✓

X

cost node c
deterministically
influenced by x

c

1

@

@✓
E

2
64

X

cost node c

c

3
75 =

X

stochastic node x
deterministically
influenced by ✓

0
BBB@
@

@✓
log p(x | parents(x))

X

cost node c
influenced by x

c

1
CCCA +

@

@✓

X

cost node c
deterministically
influenced by x

c

� baseline(all nodes not influenced by x)

1

Just Differentiate the “Surrogate” Function

@

@✓
E

2
64

X

cost node c

c

3
75 =

X

stochastic node x
deterministically
influenced by ✓

0
BBB@
@

@✓
log p(x | parents(x))

X

cost node c
influenced by x

c

1
CCCA +

@

@✓

X

cost node c
deterministically
influenced by x

c

� baseline(all nodes not influenced by x)

=
@

@✓

2
6666664

X

stochastic node x
deterministically
influenced by ✓

0
BBB@log p(x | parents(x))

0
BBB@

X

cost node c
influenced by x

ĉ � baseline

1
CCCA

1
CCCA +

X

cost node c
deterministically
influenced by x

c(✓)

3
7777775

1

Under certain conditions, surrogate is a lower bound on expected
cost, related to variational lower bound. See Appendix C

Equivalently, use backprop, but introduce terms
∇logp(x) * (sum of downstream costs)
at stochastic nodes. See Algorithm 1 in paper.

Ref: [REINFORCE]

Ref: [GLIMPSE]

Ref: [SFFNN]

Ref: [RLNTM]

Refs: [NVIL], [VAE], [DLGM]

- [NVIL] Mnih & Gregor. Neural variational inference and learning in belief networks (2014).
- [VAE] Kingma & Welling. Autoencoding Variational Bayes (2013)
- [DLGM] Rezende, Mohamed & Wierstra, Stochastic backpropagation and approximate inference in

deep generative models. (2014)
- [GLIMPSE] Mnih, Heess, Graves & Kavukcuoglu. Recurrent models of visual attention. (2014)
- [RLNTM] Zaremba & Sutskever. Reinforcement learning neural Turing machines. (2015)
- [SFFNN] Tang & Salakhudinov, Learning Stochastic Feedforward Networks. (2013)
- [REINFORCE] Williams Simple statistical gradient-following algorithms for connectionist reinforcement

learning (1992)
- Fu, Gradient estimation (2006)
- Neal & Hinton. A view of the EM algorithm that justifies incremental, sparse, and other variants (1998)

References

Two Flavors of Gradient Estimation

✓ Input node

Deterministic node

Stochastic node

✓ x f

Gives SF estimator

✓

z

x f

Gives PD estimator

2.3 Simple Examples

Several simple examples that illustrate the stochastic computation graph formalism are shown below.
The gradient estimators can be described by writing the expectations as integrals and differentiating,
as with the simpler estimators from Section 2.1. However, they are also implied by the general
results that we will present in Section 3.

Stochastic Computation Graph Objective Gradient Estimator

(1) ✓ x y f

(2) ✓ x y f

(3) ✓ x y f

(4) ✓

x

y

f

(5) ✓

x0 x1 x2

f1 f2

@x

@✓

@

@x
log p(y | x)f(y)

@

@✓
log p(x | ✓)f(y(x))

@

@✓
log p(x | ✓)f(y)

@

@✓
log p(x | ✓)f(x, y(✓)) +

@y

@✓

@f

@y

@

@✓
log p(x1 | ✓, x0)(f1(x1) + f2(x2))

+
@

@✓
log p(x2 | ✓, x1)f2(x2)

Ey [f(y)]

Ex [f(y(x))]

Ex,y [f(y)]

Ex [f(x, y(✓))]

Ex1,x2 [f1(x1) + f2(x2)]

Figure 1: Simple stochastic computation graphs

These simple examples illustrate several important motifs, where stochastic and deterministic nodes
are arranged in series or in parallel. For example, note that in (2) the derivative of y does not appear
in the estimator, since the path from ✓ to f is “blocked” by x. Similarly, in (3), p(y | x) does not
appear (this type of behavior is particularly useful if we only have access to a simulator of a system,
but not access to the actual likelihood function). On the other hand, (4) has a direct path from ✓ to
f , which contributes a term to the gradient estimator. (5) resembles a parameterized Markov reward
process, and it illustrates that we’ll obtain score function terms of the form grad log-probability ⇥
future costs.

x h1 h2

W1 W2b1 b2

soft-
max

y=label

cross-
entropy
loss

The examples above all have one input ✓, but the formal-
ism accommodates models with multiple inputs, for ex-
ample a stochastic neural network with multiple layers of
weights and biases, which may influence different sub-
sets of the stochastic and cost nodes. See Appendix C
for nontrivial examples with stochastic nodes and multi-
ple inputs. The figure on the right shows a deterministic
computation graph representing classification loss for a two-layer neural network, which has four
parameters (W1, b1, W2, b2) (weights and biases). Of course, this deterministic computation graph
is a special type of stochastic computation graph.

4

@

@✓
E

2
64

X

cost node c

c

3
75 =

X

stochastic node x
deterministically
influenced by ✓

0
BBB@
@

@✓
log p(x | parents(x))

X

cost node c
influenced by x

c

1
CCCA +

@

@✓

X

cost node c
deterministically
influenced by x

c

� baseline(all nodes not influenced by x)

=
@

@✓

2
6666664

X

stochastic node x
deterministically
influenced by ✓

0
BBB@log p(x | parents(x))

0
BBB@

X

cost node c
influenced by x

ĉ � baseline

1
CCCA

1
CCCA +

X

cost node c
deterministically
influenced by x

c(✓)

3
7777775

Score function estimator: given x ⇠ px(x; ✓)

@

@✓
Ex [f(x)] = Ex

f(x)

@

@✓
log px(x; ✓)

�
.

Pathwise derivative estimator: given z ⇠ pz(z), deterministic x(z, ✓)

@

@✓
Ez [f(x(z, ✓))] = Ez

@

@✓
f(x(z, ✓))

�
.

1

Overview

L L

Why’s it useful?
1) no need to rederive every time
2) enable generic software

a

d

cb

e

θ

φ

@

@✓
E

2
64

X

cost node c

c

3
75 =

X

stochastic node x
deterministically
influenced by ✓

0
BBB@
@

@✓
log p(x | parents(x))

X

cost node c
influenced by x

c

1
CCCA +

@

@✓

X

cost node c
deterministically
influenced by x

c

� baseline(all nodes not influenced by x)

=
@

@✓

2
6666664

X

stochastic node x
deterministically
influenced by ✓

0
BBB@log p(x | parents(x))

0
BBB@

X

cost node c
influenced by x

ĉ � baseline

1
CCCA

1
CCCA +

X

cost node c
deterministically
influenced by x

c(✓)

3
7777775

Score function estimator: given x ⇠ px(x; ✓)

@

@✓
Ex [f(x)] = Ex

f(x)

@

@✓
log px(x; ✓)

�
.

Pathwise derivative estimator: given z ⇠ pz(z), deterministic x(z, ✓)

@

@✓
Ez [f(x(z, ✓))] = Ez

@

@✓
f(x(z, ✓))

�
.

@a

@✓

@p(b | a, d)

@a

@p(b | a, d)

@a

@c

@b

@e

@d

@p(d | �)

@�

@c

@b

@b

@d

1

@

@✓
E

2
64

X

cost node c

c

3
75 =

X

stochastic node x
deterministically
influenced by ✓

0
BBB@
@

@✓
log p(x | parents(x))

X

cost node c
influenced by x

c

1
CCCA +

@

@✓

X

cost node c
deterministically
influenced by x

c

� baseline(all nodes not influenced by x)

=
@

@✓

2
6666664

X

stochastic node x
deterministically
influenced by ✓

0
BBB@log p(x | parents(x))

0
BBB@

X

cost node c
influenced by x

ĉ � baseline

1
CCCA

1
CCCA +

X

cost node c
deterministically
influenced by x

c(✓)

3
7777775

Score function estimator: given x ⇠ px(x; ✓)

@

@✓
Ex [f(x)] = Ex

f(x)

@

@✓
log px(x; ✓)

�
.

Pathwise derivative estimator: given z ⇠ pz(z), deterministic x(z, ✓)

@

@✓
Ez [f(x(z, ✓))] = Ez

@

@✓
f(x(z, ✓))

�
.

@a

@✓

@ log p(b | a, d)

@a

@ log p(b | a, d)

@a

@c

@b

@e

@d

@ log p(d | �)

@�

@c

@b

@b

@d

1

Worked Example

Conclusions

- We generalize computation graph formalism to allow for
stochastic nodes that “block” derivative propagation

- We generalize “baseline” (from policy gradient lit.) so it
depends on all non-descendants of stochastic node

- Gradient estimator can be computed with modification of
backpropagation algorithm

- Automatically reproduce estimators from previous work

@a

@✓

@ log p(b | a, d)

@a

@ log p(b | a, d)

@a

@c

@b

@e

@d

@ log p(d | �)

@�
(c + e)

@c

@b

@b

@d

@ log p(b | a, d)

@d
c

@d

@�

✓
@ log p(b | a, d)

@d
c +

@e

@d

◆

2

@a

@✓

@ log p(b | a, d)

@a

@ log p(b | a, d)

@a

@c

@b

@e

@d

@ log p(d | �)

@�
(c + e)

@c

@b

@b

@d

@ log p(b | a, d)

@d
c

@d

@�

✓
@ log p(b | a, d)

@d
c +

@e

@d

◆

2

@a

@✓

@ log p(b | a, d)

@a
c

@ log p(b | a, d)

@a
c

@c

@b

@e

@d

@ log p(d | �)

@�
(c + e)

@c

@b

@b

@d

@ log p(b | a, d)

@d
c

@d

@�

✓
@ log p(b | a, d)

@d
c +

@e

@d

◆

2

@a

@✓

@ log p(b | a, d)

@a
c

@ log p(b | a, d)

@a
c

@c

@b

@e

@d

@ log p(d | �)

@�
(c + e)

@c

@b

@b

@d

@ log p(b | a, d)

@d
c

@d

@�

✓
@ log p(b | a, d)

@d
c +

@e

@d

◆

2

J. Schulman, N. Heess, T. Weber, et al. “Gradient Estimation Using Stochastic Computation Graphs”. In: NIPS. 2015

Worked Example

a

d

cb

e

θ

φ

I L = c + e. Want to compute d
dθE [L] and d

dφE [L].

I Treat stochastic nodes (b, d) as constants, and introduce losses logprob ∗ (futurecost) at
each stochastic node

I Obtain unbiased gradient estimate by differentiating surrogate:

Surrogate(θ, ψ) = c + e︸ ︷︷ ︸
(1)

+ log p(b̂ | a, d)ĉ︸ ︷︷ ︸
(2)

(1): how parameters influence cost through deterministic dependencies

(2): how parameters affect distribution over random variables.

	Trust Region Policy Optimization
	Variance Reduction Using Value Functions
	Pathwise Derivative Policy Gradient Methods
	Stochastic Computation Graphs

