Deep Reinforcement Learning: Policy Gradients and *Q*-Learning

John Schulman

OpenAl

Bay Area Deep Learning School September 24, 2016

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Introduction and Overview

Aim of This Talk

- What is deep RL, and should I use it?
- Overview of the leading techniques in deep reinforcement learning

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- Policy gradient methods
- Q-learning and SARSA
- What are their pros and cons?

What is Reinforcement Learning?

- Branch of machine learning concerned with taking sequences of actions
- Usually described in terms of agent interacting with a previously unknown environment, trying to maximize cumulative reward

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

What Is Deep Reinforcement Learning?

Reinforcement learning using neural networks to approximate functions

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- Policies (select next action)
- Value functions (measure goodness of states or state-action pairs)
- Models (predict next states and rewards)

Motor Control and Robotics

Robotics:

- Observations: camera images, joint angles
- Actions: joint torques
- Rewards: stay balanced, navigate to target locations, serve and protect humans

Business Operations

Inventory Management

- Observations: current inventory levels
- Actions: number of units of each item to purchase

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Rewards: profit

In Other ML Problems

- Hard Attention¹
 - Observation: current image window
 - Action: where to look
 - Reward: classification
- Sequential/structured prediction, e.g., machine translation²
 - Observations: words in source language
 - Actions: emit word in target language
 - ▶ Rewards: sentence-level metric, e.g. BLEU score

¹V. Mnih et al. "Recurrent models of visual attention". In: Advances in Neural Information Processing Systems. 2014, pp. 2204–2212.

²H. Daumé Iii, J. Langford, and D. Marcu. "Search-based structured prediction". In: *Machine learning* 75.3 (2009), pp. 297–325; S. Ross, G. J. Gordon, and D. Bagnell. "A Reduction of Imitation Learning and Structured Prediction to No-Regret Online Learning." In: *AISTATS*. vol. 1. 2. 2011, p. 6; M. Ranzato et al. "Sequence level training with recurrent neural networks". In: *arXiv preprint arXiv:1511.06732* (2015); *@* + *<* ₹ + *<* ₹ *>* ₹

Supervised learning:

- Environment samples input-output pair $(x_t, y_t) \sim \rho$
- Agent predicts $\hat{y}_t = f(x_t)$
- Agent receives loss $\ell(y_t, \hat{y}_t)$
- Environment asks agent a question, and then tells her the right answer

Contextual bandits:

- Environment samples input $x_t \sim \rho$
- Agent takes action $\hat{y}_t = f(x_t)$
- Agent receives cost $c_t \sim P(c_t | x_t, \hat{y}_t)$ where P is an unknown probability distribution
- Environment asks agent a question, and gives her a noisy score on her answer

Application: personalized recommendations

Reinforcement learning:

- Environment samples input $x_t \sim P(x_t | x_{t-1}, y_{t-1})$
 - Input depends on your previous actions!
- Agent takes action $\hat{y}_t = f(x_t)$
- ► Agent receives cost c_t ~ P(c_t | x_t, ŷ_t) where P a probability distribution unknown to the agent.

How Does RL Relate to Other Machine Learning Problems?

Summary of differences between RL and supervised learning:

- You don't have full access to the function you're trying to optimize—must query it through interaction.
- Interacting with a stateful world: input x_t depend on your previous actions

Should I Use Deep RL On My Practical Problem?

- Might be overkill
- Other methods worth investigating first
 - Derivative-free optimization (simulated annealing, cross entropy method, SPSA)
 - Is it a contextual bandit problem?
 - Non-deep RL methods developed by Operations Research community³

³W. B. Powell. Approximate Dynamic Programming: Solving the curses of dimensionality. Vol. 703. John Wiley & Sons, 2007. ← □ ▷ ← ⊕ ▷ ← ⊕ ▷ ← ⊕ ▷ ↓ ⊕ ▷ ↓ ⊕ ○ へ (>

Recent Success Stories in Deep RL

- ATARI using deep Q-learning⁴, policy gradients⁵, DAGGER⁶
- Superhuman Go using supervised learning + policy gradients + Monte Carlo tree search + value functions⁷
- Robotic manipulation using guided policy search⁸
- Robotic locomotion using policy gradients⁹
- 3D games using policy gradients¹⁰

⁴V. Mnih et al. "Playing Atari with Deep Reinforcement Learning". In: arXiv preprint arXiv:1312.5602 (2013).

⁵J. Schulman et al. "Trust Region Policy Optimization". In: arXiv preprint arXiv:1502.05477 (2015).

⁶X. Guo et al. "Deep learning for real-time Atari game play using offline Monte-Carlo tree search planning". In: Advances in Neural Information Processing Systems. 2014, pp. 3338–3346.

⁷D. Silver et al. "Mastering the game of Go with deep neural networks and tree search". In: *Nature* 529.7587 (2016), pp. 484–489.

⁸S. Levine et al. "End-to-end training of deep visuomotor policies". In: arXiv preprint arXiv:1504.00702 (2015).

⁹ J. Schulman et al. "High-dimensional continuous control using generalized advantage estimation". In: arXiv preprint arXiv:1506.02438 (2015).

Markov Decision Processes

Definition

- Markov Decision Process (MDP) defined by (S, A, P), where
 - S: state space
 - ▶ A: action space
 - P(r, s' | s, a): transition + reward probability distribution

- Extra objects defined depending on problem setting
 - μ : Initial state distribution
- Optimization problem: maximize expected cumulative reward

- In each episode, the initial state is sampled from μ, and the agent acts until the *terminal state* is reached. For example:
 - Taxi robot reaches its destination (termination = good)

- Waiter robot finishes a shift (fixed time)
- Walking robot falls over (termination = bad)
- ► Goal: maximize expected reward per episode

Policies

- Deterministic policies: $a = \pi(s)$
- Stochastic policies: $a \sim \pi(a \mid s)$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Episodic Setting

$$egin{aligned} &s_0 \sim \mu(s_0) \ &a_0 \sim \pi(a_0 \mid s_0) \ &s_1, r_0 \sim P(s_1, r_0 \mid s_0, a_0) \ &a_1 \sim \pi(a_1 \mid s_1) \ &s_2, r_1 \sim P(s_2, r_1 \mid s_1, a_1) \ & \dots \ &a_{T-1} \sim \pi(a_{T-1} \mid s_{T-1}) \ &s_{T}, r_{T-1} \sim P(s_T \mid s_{T-1}, a_{T-1}) \end{aligned}$$

)

Objective:

maximize
$$\eta(\pi)$$
, where

$$\eta(\pi) = E[r_0 + r_1 + \cdots + r_{T-1} \mid \pi]$$

Episodic Setting

Objective:

maximize
$$\eta(\pi), \,\,$$
 where $\eta(\pi)= {\sf E}[{\it r}_0+{\it r}_1+\dots+{\it r}_{{\cal T}-1}\,|\,\pi]$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Parameterized Policies

- A family of policies indexed by parameter vector $heta \in \mathbb{R}^d$
 - Deterministic: $a = \pi(s, \theta)$
 - Stochastic: $\pi(a \mid s, \theta)$
- Analogous to classification or regression with input s, output a.
 - Discrete action space: network outputs vector of probabilities
 - Continuous action space: network outputs mean and diagonal covariance of Gaussian

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Policy Gradient Methods

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

Policy Gradient Methods: Overview

Problem:

maximize $E[R \mid \pi_{\theta}]$

Intuitions: collect a bunch of trajectories, and ...

- 1. Make the good trajectories more probable
- 2. Make the good actions more probable
- 3. Push the actions towards good actions (DPG¹¹, SVG¹²)

¹¹D. Silver et al. "Deterministic policy gradient algorithms". In: *ICML*. 2014.

Score Function Gradient Estimator

Consider an expectation E_{x~p(x | θ)}[f(x)]. Want to compute gradient wrt θ

$$\begin{aligned} \nabla_{\theta} E_{x}[f(x)] &= \nabla_{\theta} \int \mathrm{d}x \ p(x \mid \theta) f(x) \\ &= \int \mathrm{d}x \ \nabla_{\theta} p(x \mid \theta) f(x) \\ &= \int \mathrm{d}x \ p(x \mid \theta) \frac{\nabla_{\theta} p(x \mid \theta)}{p(x \mid \theta)} f(x) \\ &= \int \mathrm{d}x \ p(x \mid \theta) \nabla_{\theta} \log p(x \mid \theta) f(x) \\ &= E_{x}[f(x) \nabla_{\theta} \log p(x \mid \theta)]. \end{aligned}$$

- Last expression gives us an unbiased gradient estimator. Just sample x_i ~ p(x | θ), and compute ĝ_i = f(x_i)∇_θ log p(x_i | θ).
- Need to be able to compute and differentiate density p(x | θ) wrt θ

Derivation via Importance Sampling

Alternative Derivation Using Importance Sampling¹³

$$\mathbb{E}_{\mathrm{x}\sim heta}\left[f(x)
ight] = \mathbb{E}_{\mathrm{x}\sim heta_{\mathrm{old}}}\left[rac{p(x\mid heta)}{p(x\mid heta_{\mathrm{old}})}f(x)
ight]
onumber \
abla_{ heta}\mathbb{E}_{\mathrm{x}\sim heta}\left[f(x)
ight] = \mathbb{E}_{\mathrm{x}\sim heta_{\mathrm{old}}}\left[rac{
abla_{ heta}p(x\mid heta)}{p(x\mid heta_{\mathrm{old}})}f(x)
ight]
onumber \
abla_{ heta}\mathbb{E}_{\mathrm{x}\sim heta}\left[f(x)
ight] \Big|_{ heta= heta_{\mathrm{old}}} = \mathbb{E}_{\mathrm{x}\sim heta_{\mathrm{old}}}\left[rac{
abla_{ heta}p(x\mid heta)}{p(x\mid heta_{\mathrm{old}})}f(x)
ight]
onumber \
onumber \
abla_{ heta}\mathbb{E}_{\mathrm{x}\sim heta_{\mathrm{old}}}\left[rac{
abla_{ heta}p(x\mid heta)}{p(x\mid heta_{\mathrm{old}})}f(x)
ight]
onumber \
onumber \
abla_{ heta}\mathbb{E}_{\mathrm{x}\sim heta_{\mathrm{old}}}\left[
abla_{ heta}\log p(x\mid heta)\Big|_{ heta= heta_{\mathrm{old}}}f(x)
ight]$$

¹³T. Jie and P. Abbeel. "On a connection between importance sampling and the likelihood ratio policy gradient". In: Advances in Neural Information Processing Systems. 2010, pp. ±000–1098. < ₹ > < ₹ > < ₹ < ? < ?

Score Function Gradient Estimator: Intuition

 $\hat{g}_i = f(x_i) \nabla_{\theta} \log p(x_i \mid \theta)$

- Let's say that f(x) measures how good the sample x is.
- Moving in the direction ĝ_i pushes up the logprob of the sample, in proportion to how good it is
- Valid even if f(x) is discontinuous, and unknown, or sample space (containing x) is a discrete set

Score Function Gradient Estimator: Intuition

$$\hat{g}_i = f(x_i)
abla_{ heta} \log p(x_i \mid heta)$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Score Function Gradient Estimator: Intuition

$$\hat{g}_i = f(x_i)
abla_{ heta} \log p(x_i \mid heta)$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Score Function Gradient Estimator for Policies

Now random variable x is a whole trajectory

$$\tau = (s_0, a_0, r_0, s_1, a_1, r_1, \dots, s_{T-1}, a_{T-1}, r_{T-1}, s_T)$$

$$\nabla_{\theta} E_{\tau}[R(\tau)] = E_{\tau}[\nabla_{\theta} \log p(\tau \mid \theta)R(\tau)]$$

• Just need to write out $p(\tau \mid \theta)$:

$$p(\tau \mid \theta) = \mu(s_0) \prod_{t=0}^{T-1} [\pi(a_t \mid s_t, \theta) P(s_{t+1}, r_t \mid s_t, a_t)]$$
$$\log p(\tau \mid \theta) = \log \mu(s_0) + \sum_{t=0}^{T-1} [\log \pi(a_t \mid s_t, \theta) + \log P(s_{t+1}, r_t \mid s_t, a_t)]$$

$$\nabla_{\theta} \log p(\tau \mid \theta) = \nabla_{\theta} \sum_{t=0}^{T-1} \log \pi(a_t \mid s_t, \theta)$$
$$\nabla_{\theta} \mathbb{E}_{\tau} \left[R \right] = \mathbb{E}_{\tau} \left[R \nabla_{\theta} \sum_{t=0}^{T-1} \log \pi(a_t \mid s_t, \theta) \right]$$

Interpretation: using good trajectories (high R) as supervised examples in classification / regression

Policy Gradient: Use Temporal Structure

Previous slide:

$$\nabla_{\theta} \mathbb{E}_{\tau} \left[R \right] = \mathbb{E}_{\tau} \left[\left(\sum_{t=0}^{\tau-1} r_t \right) \left(\sum_{t=0}^{\tau-1} \nabla_{\theta} \log \pi(a_t \mid s_t, \theta) \right) \right]$$

► We can repeat the same argument to derive the gradient estimator for a single reward term r_{t'}.

$$\nabla_{\theta} \mathbb{E}\left[\mathbf{r}_{t'}\right] = \mathbb{E}\left[\mathbf{r}_{t'} \sum_{t=0}^{t} \nabla_{\theta} \log \pi(\mathbf{a}_t \mid \mathbf{s}_t, \theta)\right]$$

Sum this formula over t, we obtain

$$\nabla_{\theta} \mathbb{E}[R] = \mathbb{E}\left[\sum_{t=0}^{T-1} r_{t'} \sum_{t=0}^{t'} \nabla_{\theta} \log \pi(a_t \mid s_t, \theta)\right]$$
$$= \mathbb{E}\left[\sum_{t=0}^{T-1} \nabla_{\theta} \log \pi(a_t \mid s_t, \theta) \sum_{t'=t}^{T-1} r_{t'}\right]$$

Policy Gradient: Introduce Baseline

Further reduce variance by introducing a baseline b(s)

$$\nabla_{\theta} \mathbb{E}_{\tau} \left[R \right] = \mathbb{E}_{\tau} \left[\sum_{t=0}^{T-1} \nabla_{\theta} \log \pi(a_t \mid s_t, \theta) \left(\sum_{t'=t}^{T-1} r_{t'} - b(s_t) \right) \right]$$

- ▶ For any choice of *b*, gradient estimator is unbiased.
- ▶ Near optimal choice is expected return, $b(s_t) \approx \mathbb{E}[r_t + r_{t+1} + r_{t+2} + \cdots + r_{T-1}]$
- ▶ Interpretation: increase logprob of action a_t proportionally to how much returns $\sum_{t=t'}^{T-1} r_{t'}$ are better than expected

Discounts for Variance Reduction

 Introduce discount factor γ, which ignores delayed effects between actions and rewards

$$\nabla_{\theta} \mathbb{E}_{\tau} \left[R \right] \approx \mathbb{E}_{\tau} \left[\sum_{t=0}^{T-1} \nabla_{\theta} \log \pi(a_t \mid s_t, \theta) \left(\sum_{t'=t}^{T-1} \gamma^{t'-t} r_{t'} - b(s_t) \right) \right]$$

- Now, we want $b(s_t) \approx \mathbb{E}\left[r_t + \gamma r_{t+1} + \gamma^2 r_{t+2} + \dots + \gamma^{T-1-t} r_{T-1}\right]$
- Write gradient estimator more generally as

$$abla_{ heta} \mathbb{E}_{ au} \left[R
ight] pprox \mathbb{E}_{ au} \left[\sum_{t=0}^{ au-1}
abla_{ heta} \log \pi(\mathbf{a}_t \mid \mathbf{s}_t, heta) \hat{A}_t
ight]$$

 \hat{A}_t is the advantage estimate

Algorithm 1 "Vanilla" policy gradient algorithm

Initialize policy parameter θ , baseline b for iteration=1, 2, ... do Collect a set of trajectories by executing the current policy At each timestep in each trajectory, compute the return $R_t = \sum_{t'-t}^{T-1} \gamma^{t'-t} r_{t'}$, and the advantage estimate $\hat{A}_t = R_t - b(s_t)$. Re-fit the baseline, by minimizing $||b(s_t) - R_t||^2$, summed over all trajectories and timesteps. Update the policy, using a policy gradient estimate \hat{g} , which is a sum of terms $\nabla_{\theta} \log \pi(a_t \mid s_t, \theta) \hat{A}_t$ end for

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○

Extension: Step Sizes and Trust Regions

Why are step sizes a big deal in RL?

- Supervised learning
 - \blacktriangleright Step too far \rightarrow next update will fix it
- Reinforcement learning
 - Step too far \rightarrow bad policy
 - Next batch: collected under bad policy
 - Can't recover, collapse in performance!

Extension: Step Sizes and Trust Regions

 Trust Region Policy Optimization: limit KL divergence between action distribution of pre-update and post-update policy¹⁴

$$\mathbb{E}_{s}\left[D^{\mathrm{KL}}(\pi_{\mathrm{old}}(\cdot \mid s) \parallel \pi(\cdot \mid s))\right] \leq \delta$$

 Closely elated to previous natural policy gradient methods¹⁵

¹⁴J. Schulman et al. "Trust Region Policy Optimization". In: arXiv preprint arXiv:1502.05477 (2015).

Extension: Further Variance Reduction

- Use value functions for more variance reduction (at the cost of bias): actor-critic methods¹⁶
- Reparameterization trick: instead of increasing the probability of the good actions, push the actions towards (hopefully) better actions¹⁷

¹⁶ J. Schulman et al. "High-dimensional continuous control using generalized advantage estimation". In: arXiv preprint arXiv:1506.02438 (2015); V. Mnih et al. "Asynchronous Methods for Deep Reinforcement Learning". In: arXiv preprint arXiv:1602.01783 (2016).

¹⁷D. Silver et al. "Deterministic policy gradient algorithms". In: *ICML*. 2014; N. Heess et al. "Learning continuous control policies by stochastic value gradients". In: *Advances in Neural Information Processing Systems*. 2015, pp. 2926–2934.

Interlude

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

Q-Function Learning Methods

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

Value Functions

Definitions:

$$Q^{\pi}(s, a) = \mathbb{E}_{\pi} \left[r_0 + \gamma r_1 + \gamma^2 r_2 + \dots \mid s_0 = s, a_0 = a \right]$$

Called *Q*-function or state-action-value function

$$V^{\pi}(s) = \mathbb{E}_{\pi} \left[r_0 + \gamma r_1 + \gamma^2 r_2 + \dots \mid s_0 = s \right]$$
$$= \mathbb{E}_{a \sim \pi} \left[Q^{\pi}(s, a) \right]$$
Called state-value function

$$A^{\pi}(s, a) = Q^{\pi}(s, a) - V^{\pi}(s)$$

Called advantage function

 This section considers methods that explicitly store Q-functions instead of policies π, and updates them using Bellman equations

Bellman Equations for Q^{π}

• Bellman equation for Q^{π}

$$Q^{\pi}(s_{0}, a_{0}) = \mathbb{E}_{s_{1} \sim P(s_{1} \mid s_{0}, a_{0})} [r_{0} + \gamma V^{\pi}(s_{1})]$$

= $\mathbb{E}_{s_{1} \sim P(s_{1} \mid s_{0}, a_{0})} [r_{0} + \gamma \mathbb{E}_{a_{1} \sim \pi} [Q^{\pi}(s_{1}, a_{1})]]$

• We can write out Q^{π} with k-step empirical returns

$$Q^{\pi}(s_{0}, a_{0}) = \mathbb{E}_{s_{1}, a_{1} \mid s_{0}, a_{0}} [r_{0} + \gamma V^{\pi}(s_{1}, a_{1})]$$

= $\mathbb{E}_{s_{1}, a_{1}, s_{2}, a_{2} \mid s_{0}, a_{0}} [r_{0} + \gamma r_{1} + \gamma^{2} Q^{\pi}(s_{2}, a_{2})]$

$$=\mathbb{E}_{s_1,a_1\ldots,s_k,a_k\mid s_0,a_0}\left[r_0+\gamma r_1+\cdots+\gamma^{k-1}r_{k-1}+\gamma^k Q^{\pi}(s_k)\right]$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Bellman Backups

From previous slide:

$$Q^{\pi}(s_0, a_0) = \mathbb{E}_{s_1 \sim P(s_1 \mid s_0, a_0)} \left[r_0 + \gamma \mathbb{E}_{a_1 \sim \pi} \left[Q^{\pi}(s_1, a_1) \right] \right]$$

 Define the Bellman backup operator (operating on Q-functions) as follows

$$[B^{\pi}Q](s_0,a_0) = \mathbb{E}_{s_1 \sim P(s_1 \mid s_0,a_0)} \left[r_0 + \gamma \mathbb{E}_{a_1 \sim \pi} \left[Q(s_1,a_1) \right] \right]$$

• Then Q^{π} is a *fixed point* of this operator

$$B^{\pi}Q^{\pi}=Q^{\pi}$$

 Furthermore, if we apply B^π repeatedly to any initial Q, the series converges to Q^π

$$Q, \ B^{\pi}Q, \ (B^{\pi})^{2}Q, \ (B^{\pi})^{3}Q, \ \cdots \rightarrow Q^{\pi}$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Introducing Q^*

- Let π^* denote an optimal policy
- ▶ Define Q^{*} = Q^{π^{*}}, which also satisfies Q^{*}(s, a) = max_π Q^π(s, a)
- π^* is deterministic and satisfies $\pi^*(s) = \arg \max_a Q^*(s, a)$
- Thus, Bellman equation

$$Q^{\pi}(s_0, a_0) = \mathbb{E}_{s_1 \sim P(s_1 \mid s_0, a_0)} \left[r_0 + \gamma \mathbb{E}_{a_1 \sim \pi} \left[Q^{\pi}(s_1, a_1) \right] \right]$$

becomes

$$Q^{*}(s_{0}, a_{0}) = \mathbb{E}_{s_{1} \sim P(s_{1} \mid s_{0}, a_{0})} \left[r_{0} + \gamma \max_{a_{1}} Q^{\pi}(s_{1}, a_{1}) \right]$$

Bellman Operator for Q^*

Define a corresponding Bellman backup operator

$$[BQ](s_0, a_0) = \mathbb{E}_{s_1 \sim P(s_1 \mid s_0, a_0)} \left[r_0 + \gamma \max_{a_1} Q(s_1, a_1) \right]$$

► Q^{*} is a fixed point of B:

$$BQ^* = Q^*$$

If we apply B repeatedly to any initial Q, the series converges to Q*

$$Q, BQ, B^2Q, \cdots \rightarrow Q^*$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Classic Algorithms for Solving MDPs

- Value iteration:
 - ▶ Initialize Q
 - Do $Q \leftarrow BQ$ until convergence
- Policy iteration:
 - Initialize π
 - Repeat:
 - Compute Q^{π}
 - ► $\pi \leftarrow \mathcal{G}Q^{\pi}$ ("greedy policy" for Q^{π}) where $[\mathcal{G}Q^{\pi}](s) = \arg \max_{a} Q^{\pi}(s, a)$
- ► To compute Q^π in policy iteration, we can solve linear equations exactly, or more commonly, do k Bellman backups Q ← B^πQ.

Sampling Based Algorithms

• Recall backup formulas for Q^{π} and Q^{*}

$$[BQ](s_0, a_0) = \mathbb{E}_{s_1 \sim P(s_1 \mid s_0, a_0)} \left[r_0 + \gamma \max_{a_1} Q(s_1, a_1) \right]$$
$$[B^{\pi}Q](s_0, a_0) = \mathbb{E}_{s_1 \sim P(s_1 \mid s_0, a_0)} \left[r_0 + \gamma \mathbb{E}_{a_1 \sim \pi} \left[Q(s_1, a_1) \right] \right]$$

We can compute unbiased estimator of RHS of both equations using a single sample. Does not matter what policy was used to select actions!

$$\widehat{[BQ]}(s_0, a_0) = r_0 + \gamma \max_{a_1} Q(s_1, a_1)$$
$$\widehat{[B^{\pi}Q]}(s_0, a_0) = r_0 + \gamma \mathbb{E}_{a_1 \sim \pi} [Q(s_1, a_1)]$$

Backups still converge to Q^π, Q^{*} with this noise¹⁸

¹⁸T. Jaakkola, M. I. Jordan, and S. P. Singh. "On the convergence of stochastic iterative dynamic programming algorithms". In: *Neural computation* 6.6 (1994), pp. 1185–1201; D. P. Bertsekas. *Dynamic programming and optimal control*. Vol. 2. 2. Athena Scientific, 2012.

Neural-Fitted Algorithms

- Parameterize Q-function with a neural network Q_{θ}
- Instead of $Q \leftarrow \widehat{BQ}$, do

$$\underset{\theta}{\text{minimize}} \sum_{t} \|Q_{\theta}(s_{t}, a_{t}) - \widehat{BQ}(s_{t}, a_{t})\|^{2}$$
(1)

One version¹⁹

Algorithm 2 Neural-Fitted Q-Iteration (NFQ)

Initialize $\theta^{(0)}$. for n = 1, 2, ... do Sample trajectory using policy $\pi^{(n)}$. $\theta^{(n)} = \text{minimize}_{\theta} \sum_{t} (R_t + \gamma \max_{a'} Q_{\theta^{(n)}}(s_t, a') - Q_{\theta}(s_t, a_t))^2$ end for

¹⁹M. Riedmiller. "Neural fitted Q iteration-first experiences with a data efficient neural reinforcement learning method". In: Machine Learning: ECML 2005. Springer, 2005, pp. 317–328.4 D > 4 = > 4 = > 4 = > 2

Online Algorithms

- ► The deep *Q*-network algorithm, introduced by²⁰, is an online algorithm for neural fitted value iteration
 - Uses a replay pool—a rolling history used as data distribution
 - ► Uses a "target network" to represent the old *Q*-function, which we are doing backups on $Q_{\theta} \leftarrow BQ_{\text{target}}$
- Many extensions have been proposed since then²¹
- SARSA, which approximates B^π rather than B and is closer to policy iteration than value iteration, is found to work as well or better than DQN in some settings²²

²⁰V. Mnih et al. "Playing Atari with Deep Reinforcement Learning". In: *arXiv preprint arXiv:1312.5602* (2013).

²¹Z. Wang, N. de Freitas, and M. Lanctot. "Dueling Network Architectures for Deep Reinforcement Learning". In: arXiv preprint arXiv:1511.06581 (2015); H. Van Hasselt, A. Guez, and D. Silver. "Deep reinforcement learning with double Q-learning". In: CoRR, abs/1509.06461 (2015); T. Schaul et al. "Prioritized experience replay". In: arXiv preprint arXiv:1511.05952 (2015); M. Hausknecht and P. Stone. "Deep recurrent Q-learning for partially observable MDPs". In: arXiv preprint arXiv:1507.06527 (2015).

Conclusion

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

Summary of the Current State of Affairs

- Policy gradient methods
 - Vanilla policy gradient (including A3C)
 - Natural policy gradient and trust region methods (including TRPO)
- Q-function methods
 - ▶ DQN and relatives: like value iteration, approximates B
 - SARSA: also found to perform well
- Comparison: Q-function methods are more sample efficient when they work but don't work as generally as policy gradient methods
 - Policy gradient methods easier to debug and understand

Summary of the Current State of Affairs

		Simple & Scalable	Data Efficient
Vanilla PG	OK	Good	Bad
Natural PG	Good	Bad	OK
Q-Learning	Bad	Good	OK

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Still room for improvement!

Thank you. Questions?

