
Deep Reinforcement Learning:

Policy Gradients and Q-Learning

John Schulman

Bay Area Deep Learning School
September 24, 2016

Introduction and Overview

Aim of This Talk

I What is deep RL, and should I use it?

I Overview of the leading techniques in deep reinforcement
learning

I Policy gradient methods
I Q-learning and SARSA
I What are their pros and cons?

What is Reinforcement Learning?

I Branch of machine learning concerned with taking
sequences of actions

I Usually described in terms of agent interacting with a
previously unknown environment, trying to maximize
cumulative reward

Agent Environment

action

observation, reward

What Is Deep Reinforcement Learning?

Reinforcement learning using neural networks to approximate
functions

I Policies (select next action)

I Value functions (measure goodness of states or
state-action pairs)

I Models (predict next states and rewards)

Motor Control and Robotics

Robotics:

I Observations: camera images, joint angles

I Actions: joint torques

I Rewards: stay balanced, navigate to target locations,
serve and protect humans

Business Operations

Inventory Management

I Observations: current inventory levels

I Actions: number of units of each item to purchase

I Rewards: profit

In Other ML Problems

I Hard Attention1

I Observation: current image window
I Action: where to look
I Reward: classification

I Sequential/structured prediction, e.g., machine
translation2

I Observations: words in source language
I Actions: emit word in target language
I Rewards: sentence-level metric, e.g. BLEU score

1V. Mnih et al. “Recurrent models of visual attention”. In: Advances in Neural Information Processing
Systems. 2014, pp. 2204–2212.

2H. Daumé Iii, J. Langford, and D. Marcu. “Search-based structured prediction”. In: Machine learning 75.3
(2009), pp. 297–325; S. Ross, G. J. Gordon, and D. Bagnell. “A Reduction of Imitation Learning and Structured
Prediction to No-Regret Online Learning.” In: AISTATS. vol. 1. 2. 2011, p. 6; M. Ranzato et al. “Sequence level
training with recurrent neural networks”. In: arXiv preprint arXiv:1511.06732 (2015).

How Does RL Relate to Other ML Problems?

How Does RL Relate to Other ML Problems?

Supervised learning:

I Environment samples input-output pair (xt , yt) ∼ ρ

I Agent predicts ŷt = f (xt)

I Agent receives loss `(yt , ŷt)

I Environment asks agent a question, and then tells her the
right answer

How Does RL Relate to Other ML Problems?

Contextual bandits:

I Environment samples input xt ∼ ρ

I Agent takes action ŷt = f (xt)

I Agent receives cost ct ∼ P(ct | xt , ŷt) where P is an
unknown probability distribution

I Environment asks agent a question, and gives her a noisy
score on her answer

I Application: personalized recommendations

How Does RL Relate to Other ML Problems?

Reinforcement learning:

I Environment samples input xt ∼ P(xt | xt−1, yt−1)
I Input depends on your previous actions!

I Agent takes action ŷt = f (xt)

I Agent receives cost ct ∼ P(ct | xt , ŷt) where P a
probability distribution unknown to the agent.

How Does RL Relate to Other Machine Learning

Problems?

Summary of differences between RL and supervised learning:

I You don’t have full access to the function you’re trying to
optimize—must query it through interaction.

I Interacting with a stateful world: input xt depend on your
previous actions

Should I Use Deep RL On My Practical Problem?

I Might be overkill

I Other methods worth investigating first
I Derivative-free optimization (simulated annealing, cross

entropy method, SPSA)
I Is it a contextual bandit problem?
I Non-deep RL methods developed by Operations

Research community3

3W. B. Powell. Approximate Dynamic Programming: Solving the curses of dimensionality. Vol. 703. John
Wiley & Sons, 2007.

Recent Success Stories in Deep RL

I ATARI using deep Q-learning4, policy gradients5,
DAGGER6

I Superhuman Go using supervised learning + policy
gradients + Monte Carlo tree search + value functions7

I Robotic manipulation using guided policy search8

I Robotic locomotion using policy gradients9

I 3D games using policy gradients10

4V. Mnih et al. “Playing Atari with Deep Reinforcement Learning”. In: arXiv preprint arXiv:1312.5602 (2013).

5J. Schulman et al. “Trust Region Policy Optimization”. In: arXiv preprint arXiv:1502.05477 (2015).

6X. Guo et al. “Deep learning for real-time Atari game play using offline Monte-Carlo tree search planning”. In:
Advances in Neural Information Processing Systems. 2014, pp. 3338–3346.

7D. Silver et al. “Mastering the game of Go with deep neural networks and tree search”. In: Nature 529.7587
(2016), pp. 484–489.

8S. Levine et al. “End-to-end training of deep visuomotor policies”. In: arXiv preprint arXiv:1504.00702 (2015).

9J. Schulman et al. “High-dimensional continuous control using generalized advantage estimation”. In: arXiv
preprint arXiv:1506.02438 (2015).

10V. Mnih et al. “Asynchronous Methods for Deep Reinforcement Learning”. In: arXiv preprint
arXiv:1602.01783 (2016).

Markov Decision Processes

Definition

I Markov Decision Process (MDP) defined by (S,A,P),
where

I S: state space
I A: action space
I P(r , s ′ | s, a): transition + reward probability distribution

I Extra objects defined depending on problem setting
I µ: Initial state distribution

I Optimization problem: maximize expected cumulative
reward

Episodic Setting

I In each episode, the initial state is sampled from µ, and
the agent acts until the terminal state is reached. For
example:

I Taxi robot reaches its destination (termination = good)
I Waiter robot finishes a shift (fixed time)
I Walking robot falls over (termination = bad)

I Goal: maximize expected reward per episode

Policies

I Deterministic policies: a = π(s)

I Stochastic policies: a ∼ π(a | s)

Episodic Setting

s0 ∼ µ(s0)

a0 ∼ π(a0 | s0)

s1, r0 ∼ P(s1, r0 | s0, a0)

a1 ∼ π(a1 | s1)

s2, r1 ∼ P(s2, r1 | s1, a1)

. . .

aT−1 ∼ π(aT−1 | sT−1)

sT , rT−1 ∼ P(sT | sT−1, aT−1)

Objective:

maximize η(π), where

η(π) = E [r0 + r1 + · · ·+ rT−1 | π]

Episodic Setting

μ0

a0

s0 s1

a1 aT-1

sT

π

P

Agent

r0 r1 rT-1

Environment

s2

Objective:

maximize η(π), where

η(π) = E [r0 + r1 + · · ·+ rT−1 | π]

Parameterized Policies

I A family of policies indexed by parameter vector θ ∈ Rd

I Deterministic: a = π(s, θ)
I Stochastic: π(a | s, θ)

I Analogous to classification or regression with input s,
output a.

I Discrete action space: network outputs vector of
probabilities

I Continuous action space: network outputs mean and
diagonal covariance of Gaussian

Policy Gradient Methods

Policy Gradient Methods: Overview

Problem:

maximizeE [R | πθ]

Intuitions: collect a bunch of trajectories, and ...

1. Make the good trajectories more probable

2. Make the good actions more probable

3. Push the actions towards good actions (DPG11, SVG12)

11D. Silver et al. “Deterministic policy gradient algorithms”. In: ICML. 2014.

12N. Heess et al. “Learning continuous control policies by stochastic value gradients”. In: Advances in Neural
Information Processing Systems. 2015, pp. 2926–2934.

Score Function Gradient Estimator
I Consider an expectation Ex∼p(x | θ)[f (x)]. Want to compute

gradient wrt θ

∇θEx [f (x)] = ∇θ
∫
dx p(x | θ)f (x)

=

∫
dx ∇θp(x | θ)f (x)

=

∫
dx p(x | θ)

∇θp(x | θ)

p(x | θ)
f (x)

=

∫
dx p(x | θ)∇θ log p(x | θ)f (x)

= Ex [f (x)∇θ log p(x | θ)].

I Last expression gives us an unbiased gradient estimator. Just
sample xi ∼ p(x | θ), and compute ĝi = f (xi)∇θ log p(xi | θ).

I Need to be able to compute and differentiate density p(x | θ)
wrt θ

Derivation via Importance Sampling

Alternative Derivation Using Importance Sampling13

Ex∼θ [f (x)] = Ex∼θold

[
p(x | θ)

p(x | θold)
f (x)

]
∇θEx∼θ [f (x)] = Ex∼θold

[
∇θp(x | θ)

p(x | θold)
f (x)

]
∇θEx∼θ [f (x)]

∣∣
θ=θold

= Ex∼θold

[
∇θp(x | θ)

∣∣
θ=θold

p(x | θold)
f (x)

]
= Ex∼θold

[
∇θ log p(x | θ)

∣∣
θ=θold

f (x)
]

13T. Jie and P. Abbeel. “On a connection between importance sampling and the likelihood ratio policy
gradient”. In: Advances in Neural Information Processing Systems. 2010, pp. 1000–1008.

Score Function Gradient Estimator: Intuition

ĝi = f (xi)∇θ log p(xi | θ)

I Let’s say that f (x) measures how good the
sample x is.

I Moving in the direction ĝi pushes up the
logprob of the sample, in proportion to how
good it is

I Valid even if f (x) is discontinuous, and
unknown, or sample space (containing x) is a
discrete set

Score Function Gradient Estimator: Intuition

ĝi = f (xi)∇θ log p(xi | θ)

Score Function Gradient Estimator: Intuition

ĝi = f (xi)∇θ log p(xi | θ)

Score Function Gradient Estimator for Policies
I Now random variable x is a whole trajectory
τ = (s0, a0, r0, s1, a1, r1, . . . , sT−1, aT−1, rT−1, sT)

∇θEτ [R(τ)] = Eτ [∇θ log p(τ | θ)R(τ)]

I Just need to write out p(τ | θ):

p(τ | θ) = µ(s0)
T−1∏
t=0

[π(at | st , θ)P(st+1, rt | st , at)]

log p(τ | θ) = log µ(s0) +
T−1∑
t=0

[log π(at | st , θ) + logP(st+1, rt | st , at)]

∇θ log p(τ | θ) = ∇θ

T−1∑
t=0

log π(at | st , θ)

∇θEτ [R] = Eτ

[
R∇θ

T−1∑
t=0

log π(at | st , θ)

]
I Interpretation: using good trajectories (high R) as supervised

examples in classification / regression

Policy Gradient: Use Temporal Structure
I Previous slide:

∇θEτ [R] = Eτ

[(
T−1∑
t=0

rt

)(
T−1∑
t=0

∇θ log π(at | st , θ)

)]
I We can repeat the same argument to derive the gradient

estimator for a single reward term rt′ .

∇θE [rt′] = E

[
rt′

t∑
t=0

∇θ log π(at | st , θ)

]
I Sum this formula over t, we obtain

∇θE [R] = E

[
T−1∑
t=0

rt′
t′∑

t=0

∇θ log π(at | st , θ)

]

= E

[
T−1∑
t=0

∇θ log π(at | st , θ)
T−1∑
t′=t

rt′

]

Policy Gradient: Introduce Baseline

I Further reduce variance by introducing a baseline b(s)

∇θEτ [R] = Eτ

[
T−1∑
t=0

∇θ log π(at | st , θ)

(
T−1∑
t′=t

rt′ − b(st)

)]

I For any choice of b, gradient estimator is unbiased.

I Near optimal choice is expected return,
b(st) ≈ E [rt + rt+1 + rt+2 + · · ·+ rT−1]

I Interpretation: increase logprob of action at proportionally
to how much returns

∑T−1
t=t′ rt′ are better than expected

Discounts for Variance Reduction

I Introduce discount factor γ, which ignores delayed effects
between actions and rewards

∇θEτ [R] ≈ Eτ

[
T−1∑
t=0

∇θ log π(at | st , θ)

(
T−1∑
t′=t

γt
′−trt′ − b(st)

)]

I Now, we want
b(st) ≈ E

[
rt + γrt+1 + γ2rt+2 + · · ·+ γT−1−trT−1

]
I Write gradient estimator more generally as

∇θEτ [R] ≈ Eτ

[
T−1∑
t=0

∇θ log π(at | st , θ)Ât

]

Ât is the advantage estimate

Algorithm 1 “Vanilla” policy gradient algorithm
Initialize policy parameter θ, baseline b
for iteration=1, 2, . . . do

Collect a set of trajectories by executing the current policy
At each timestep in each trajectory, compute

the return Rt =
∑T−1

t′=t γ
t′−trt′ , and

the advantage estimate Ât = Rt − b(st).
Re-fit the baseline, by minimizing ‖b(st)− Rt‖2,

summed over all trajectories and timesteps.
Update the policy, using a policy gradient estimate ĝ ,

which is a sum of terms ∇θ log π(at | st , θ)Ât

end for

Extension: Step Sizes and Trust Regions

Why are step sizes a big deal in RL?

I Supervised learning
I Step too far → next update will fix it

I Reinforcement learning
I Step too far → bad policy
I Next batch: collected under bad policy
I Can’t recover, collapse in performance!

Extension: Step Sizes and Trust Regions

I Trust Region Policy Optimization: limit KL divergence
between action distribution of pre-update and
post-update policy14

Es

[
DKL(πold(· | s) ‖ π(· | s))

]
≤ δ

I Closely elated to previous natural policy gradient
methods15

14J. Schulman et al. “Trust Region Policy Optimization”. In: arXiv preprint arXiv:1502.05477 (2015).

15S. Kakade. “A Natural Policy Gradient.” In: NIPS. vol. 14. 2001, pp. 1531–1538; J. A. Bagnell and
J. Schneider. “Covariant policy search”. In: IJCAI. 2003; J. Peters and S. Schaal. “Natural actor-critic”. In:
Neurocomputing 71.7 (2008), pp. 1180–1190.

Extension: Further Variance Reduction

I Use value functions for more variance reduction (at the
cost of bias): actor-critic methods16

I Reparameterization trick: instead of increasing the
probability of the good actions, push the actions towards
(hopefully) better actions17

16J. Schulman et al. “High-dimensional continuous control using generalized advantage estimation”. In: arXiv
preprint arXiv:1506.02438 (2015); V. Mnih et al. “Asynchronous Methods for Deep Reinforcement Learning”. In:
arXiv preprint arXiv:1602.01783 (2016).

17D. Silver et al. “Deterministic policy gradient algorithms”. In: ICML. 2014; N. Heess et al. “Learning
continuous control policies by stochastic value gradients”. In: Advances in Neural Information Processing
Systems. 2015, pp. 2926–2934.

Interlude

Q-Function Learning Methods

Value Functions
I Definitions:

Qπ(s, a) = Eπ
[
r0 + γr1 + γ2r2 + . . . | s0 = s, a0 = a

]
Called Q-function or state-action-value function

V π(s) = Eπ
[
r0 + γr1 + γ2r2 + . . . | s0 = s

]
= Ea∼π [Qπ(s, a)]

Called state-value function

Aπ(s, a) = Qπ(s, a)− V π(s)

Called advantage function

I This section considers methods that explicitly store
Q-functions instead of policies π, and updates them using
Bellman equations

Bellman Equations for Qπ

I Bellman equation for Qπ

Qπ(s0, a0) = Es1∼P(s1 | s0,a0) [r0 + γV π(s1)]

= Es1∼P(s1 | s0,a0) [r0 + γEa1∼π [Qπ(s1, a1)]]

I We can write out Qπ with k-step empirical returns

Qπ(s0, a0) = Es1,a1 | s0,a0
[r0 + γV π(s1, a1)]

= Es1,a1,s2,a2 | s0,a0

[
r0 + γr1 + γ2Qπ(s2, a2)

]
= Es1,a1...,sk ,ak | s0,a0

[
r0 + γr1 + · · ·+ γk−1rk−1 + γkQπ(sk , ak)

]

Bellman Backups
I From previous slide:

Qπ(s0, a0) = Es1∼P(s1 | s0,a0) [r0 + γEa1∼π [Qπ(s1, a1)]]

I Define the Bellman backup operator (operating on
Q-functions) as follows

[BπQ](s0, a0) = Es1∼P(s1 | s0,a0) [r0 + γEa1∼π [Q(s1, a1)]]

I Then Qπ is a fixed point of this operator

BπQπ = Qπ

I Furthermore, if we apply Bπ repeatedly to any initial Q,
the series converges to Qπ

Q, BπQ, (Bπ)2Q, (Bπ)3Q, · · · → Qπ

Introducing Q∗

I Let π∗ denote an optimal policy

I Define Q∗ = Qπ∗ , which also satisfies
Q∗(s, a) = maxπ Q

π(s, a)

I π∗ is deterministic and satisfies π∗(s) = arg maxa Q
∗(s, a)

I Thus, Bellman equation

Qπ(s0, a0) = Es1∼P(s1 | s0,a0) [r0 + γEa1∼π [Qπ(s1, a1)]]

becomes

Q∗(s0, a0) = Es1∼P(s1 | s0,a0)

[
r0 + γ max

a1

Qπ(s1, a1)

]

Bellman Operator for Q∗

I Define a corresponding Bellman backup operator

[BQ](s0, a0) = Es1∼P(s1 | s0,a0)

[
r0 + γ max

a1

Q(s1, a1)

]
I Q∗ is a fixed point of B :

BQ∗ = Q∗

I If we apply B repeatedly to any initial Q, the series
converges to Q∗

Q, BQ, B2Q, · · · → Q∗

Classic Algorithms for Solving MDPs

I Value iteration:
I Initialize Q
I Do Q ← BQ until convergence

I Policy iteration:
I Initialize π
I Repeat:

I Compute Qπ

I π ← GQπ (“greedy policy” for Qπ)
where [GQπ](s) = arg maxa Q

π(s, a)

I To compute Qπ in policy iteration, we can solve linear
equations exactly, or more commonly, do k Bellman
backups Q ← BπQ.

Sampling Based Algorithms
I Recall backup formulas for Qπ and Q∗

[BQ](s0, a0) = Es1∼P(s1 | s0,a0)

[
r0 + γ max

a1

Q(s1, a1)

]
[BπQ](s0, a0) = Es1∼P(s1 | s0,a0) [r0 + γEa1∼π [Q(s1, a1)]]

I We can compute unbiased estimator of RHS of both
equations using a single sample. Does not matter what
policy was used to select actions!

[B̂Q](s0, a0) = r0 + γ max
a1

Q(s1, a1)

[B̂πQ](s0, a0) = r0 + γEa1∼π [Q(s1, a1)]

I Backups still converge to Qπ,Q∗ with this noise18

18T. Jaakkola, M. I. Jordan, and S. P. Singh. “On the convergence of stochastic iterative dynamic programming
algorithms”. In: Neural computation 6.6 (1994), pp. 1185–1201; D. P. Bertsekas. Dynamic programming and
optimal control. Vol. 2. 2. Athena Scientific, 2012.

Neural-Fitted Algorithms
I Parameterize Q-function with a neural network Qθ

I Instead of Q ← B̂Q, do

minimize
θ

∑
t

‖Qθ(st , at)− B̂Q(st , at)‖2 (1)

I One version19

Algorithm 2 Neural-Fitted Q-Iteration (NFQ)

Initialize θ(0).
for n = 1, 2, . . . do

Sample trajectory using policy π(n).
θ(n) = minimizeθ

∑
t(Rt + γ maxa′ Qθ(n)(st , a

′)− Qθ(st , at))2

end for

19M. Riedmiller. “Neural fitted Q iteration–first experiences with a data efficient neural reinforcement learning
method”. In: Machine Learning: ECML 2005. Springer, 2005, pp. 317–328.

Online Algorithms

I The deep Q-network algorithm, introduced by20, is an
online algorithm for neural fitted value iteration

I Uses a replay pool—a rolling history used as data
distribution

I Uses a “target network” to represent the old Q-function,
which we are doing backups on Qθ ← BQtarget

I Many extensions have been proposed since then21

I SARSA, which approximates Bπ rather than B and is
closer to policy iteration than value iteration, is found to
work as well or better than DQN in some settings22

20V. Mnih et al. “Playing Atari with Deep Reinforcement Learning”. In: arXiv preprint arXiv:1312.5602 (2013).

21Z. Wang, N. de Freitas, and M. Lanctot. “Dueling Network Architectures for Deep Reinforcement Learning”.
In: arXiv preprint arXiv:1511.06581 (2015); H. Van Hasselt, A. Guez, and D. Silver. “Deep reinforcement learning
with double Q-learning”. In: CoRR, abs/1509.06461 (2015); T. Schaul et al. “Prioritized experience replay”. In:
arXiv preprint arXiv:1511.05952 (2015); M. Hausknecht and P. Stone. “Deep recurrent Q-learning for partially
observable MDPs”. In: arXiv preprint arXiv:1507.06527 (2015).

22V. Mnih et al. “Asynchronous Methods for Deep Reinforcement Learning”. In: arXiv preprint
arXiv:1602.01783 (2016).

Conclusion

Summary of the Current State of Affairs

I Policy gradient methods
I Vanilla policy gradient (including A3C)
I Natural policy gradient and trust region methods

(including TRPO)

I Q-function methods
I DQN and relatives: like value iteration, approximates B
I SARSA: also found to perform well

I Comparison: Q-function methods are more sample
efficient when they work but don’t work as generally as
policy gradient methods

I Policy gradient methods easier to debug and understand

Summary of the Current State of Affairs

Simple & Scalable Data Efficient

Vanilla PG OK Good Bad

Natural PG Good Bad OK

Q-Learning Bad Good OK

Still room for improvement!

Fin

Thank you. Questions?

	Introduction and Overview
	Markov Decision Processes
	Policy Gradient Methods
	Interlude
	Q-Function Learning Methods
	Conclusion

