

Faster Reinforcement Learning via Transfer John Schulman

2018.09.06

Policy Gradients

Success stories

Limitations

Meta Reinforcement Learning

Gym Retro

Deep RL: using neural nets to represent functions in RL algorithm

Meta-Learning: learn how to learn. Master a task that itself involves learning

Reinforcement Learning (RL): maximize cumulative reward using trial and error.

Observation, Action, Reward

Trajectory: a sequence of observation, action, reward

Return: sum of rewards received by agent

RL Terminology (II)

Policy: function that chooses action, based on recent observations

usually stochastic

Policy Gradient Method: a class of RL algorithms that optimize a policy

Policy Gradients

Pseudocode

Initialize policy

Loop:

Collect trajectories

Estimate which actions were good and which were bad

Increase probability of good actions via gradient update

Why does it work? Gradient ascent on expected return of policy

Policy Gradients—History

Old idea (Williams '92)

Lots of recent variants with deep learning

E.g., Proximal Policy Optimization (PPO)

Policy Gradients—Success Stories

AlphaGo

Lee Sedol version used policy gradients (REINFORCE)

as part of the pipeline that also involved search

ALPHAGO

deepmind.com

Policy Gradients—Success Stories

Dota2

LSTM policy trained using PPO

beat world champions at 1v1 (2017)

beat top players at modified 5v5 (2018)

approaching top level at normal 5v5 (2018)

OpenAI, 2018

Policy Gradients—Success Stories

Robotic manipulation

LSTM policy trained using PPO

(this is actually meta-RL)

OpenAI, 2018

RL Requires a Lot of Training

	Chess	Shogi	Go
Mini-batches	700k	700k	700k
Training Time	9h	12h	34h
Training Games	44 million	24 million	21 million
Thinking Time	800 sims	800 sims	800 sims
	40 ms	80 ms	200 ms

Table S3: Selected statistics of *AlphaZero* training in Chess, Shogi and Go.

Alpha Zero Paper (Silver et al. 2017)

RL Requires a Lot of Training

	OPENAI 1V1 BOT	OPENAI FIVE
CPUs	60,000 CPU cores on Azure	128,000 <mark>preemptible</mark> CPU cores on GCP
GPUs	256 K80 GPUs on Azure	256 P100 GPUs on GCP
Experience collected	~300 years per day	~180 years per day (~900 years per day counting each hero separately)

OpenAI Five (<u>https://blog.openai.com/openai-five/</u>)

Prior Knowledge

from life history

and evolutionary history

https://www.youtube.com/watch?v=8vNxjwt2AqY

https://blog.openai.com/gym-retro/

Meta Reinforcement Learning: Problem Formulation

Single task RL: Maximize reward in a single task, given K episodes of experience

Train from scratch

Most recent deep RL work follows this framework, e.g. using Atari games

random data for illustrative purposes

Meta RL: Maze Navigation

"Classic RL" task: learn to navigate from start to goal as fast as possible in a single maze

"Meta-RL" task: learn to navigate from start to goal as fast as possible K times in a random maze

Agent doesn't know what maze it's in—needs to explore

After first episode, it should know location of goal and go straight there

Through outer training loop, agent needs to learn to explore and learn to remember

Meta RL is a Special Case of Normal RL

Define new RL task in terms of old task

First timestep: agent is placed in random task / world

New observation = (old observation, reward, "done" signal)

New-task episode = K old-task episodes

https://arxiv.org/abs/1611.02779 (Duan et al. '16)

Meta RL is a Special Case of Normal RL

RL²: "Fast Reinforcement Learning via Slow Reinforcement Learning"

Agent uses recurrent network (LSTM / GRU) as policy—internally implements learning algorithm.

Fast RL: learned "algorithm" performed by LSTM

Slow RL: algorithm used to train LSTM in outer loop

https://arxiv.org/abs/1611.02779 (Duan et al. '16)

Meta RL: Maze Navigation

https://arxiv.org/abs/1611.02779 (Duan et al. '16)

Meta RL: Robotic Manipulation

Real world: robotic hand

https://arxiv.org/pdf/1808.00177.pdf

Simulation: randomized physics, robot dimensions, visual appearance

Meta RL: Robotic Manipulation

Simulation training: every episode for LSTM policy occurs in a different randomly sampled world

Policy is trained to quickly master a new world through several seconds of interaction

Trained policy is then applied to the real world

Identifies real-world physics parameters after first few seconds of interaction

Meta RL: Robotic Manipulation

https://blog.openai.com/learning-dexterity/

Meta RL: Limitations of Approaches Described Previously

Infinite data: can randomly sample tasks; assume distribution covers the one you care about

Doesn't emphasize generalization—performance given finite training set

All "learning" is performed through RNN state updates: might be a poor inductive bias for what learning algorithm should look like

All meta-learning results so far use short horizons, 1000s of timesteps max

RL algorithms (policy gradients, Q-learning) find better solutions after longer training periods

Meta RL: changes to problem formulation

Given a finite set of training tasks and a test set of tasks

Train on training tasks as much as desired

Goal: maximize performance on test set

Performance on a task is defined as average return after K episodes of learning

Prior RL research: achieve human-level performance at games

New challenge: solve a previously unseen game as fast as a human, given prior experience with similar games

Gym Retro

Over 1000 games integrated

annotated with reward signal & episode completion

Use various game systems via emulators

Open source: https://github.com/openai/retro/

Challenge: naive definition of reward sometimes leads to "farming" infinite loop

Sonic Benchmark

Reward: moving to the right Avoid bad guys & traps, use gadgets

Sonic Benchmark

47 training tasks, 11 test tasks

PREMELIZAR PERC JONE

NAN ITEE 2016

NETRO MICHIES JUNE

472 January		Δ
000	Res 75	H
<u></u>	and the second	Such 1/
1 Sta		- S-1 📊

Sonic Benchmark

Tech Report, Nichol et al. 2018, <u>https://arxiv.org/pdf/1804.03720.pdf</u>

PPO Joint Training + Fine Tuning

Joint training: PPO on mixture of all training levels

use standard ConvNet policy

save weights at the end

Fine tuning at test time: initialize network to saved weights, run PPO

PPO Joint Training + Fine Tuning

Tech Report, Nichol et al. 2018, <u>https://arxiv.org/pdf/1804.03720.pdf</u>

<u>contest.openai.com</u> April 5 to June 5, 2018 Hired level designers to create 11 custom levels Also created 5 low-quality custom levels for leaderboard **Registration numbers:** 923 teams registered, 229 submitted solutions

average 20 submissions per team

EANK	TEAM
±1	Dharmaraja
‡2	mistake
‡3	aborg
‡4	whatever
ŧ5	Students of Plato
	Joint PPO baseline
	Joint Rainbow baseline
	Rainbow baseline
*2 *3 *4 *5	mistake aborg whatever Students of Plato Joint PPO baseline Joint Rainbow baseline Rainbow baseline

SCORE
4692
4446
4430
4274
4269
4070
3843
3498

EANK	TEAM
±1	Dharmaraja
‡2	mistake
‡3	aborg
‡4	whatever
ŧ5	Students of Plato
	Joint PPO baseline
	Joint Rainbow baseline
	Rainbow baseline
*2 *3 *4 *5	mistake aborg whatever Students of Plato Joint PPO baseline Joint Rainbow baseline Rainbow baseline

SCORE
4692
4446
4430
4274
4269
4070
3843
3498

Joint PPO Rainbow Joint PPO

ιΓΓΟ

Future Work

Improve performance on larger retro benchmark

Exploration

Unsupervised learning

Hierarchy

Improve RNN-based meta-learning

Better dealing with long time horizon: memory & credit assignment

Better architectures

More contests!

Acknowledgements

Gym Retro dataset, results, and contest was joint work with Chris Hesse, Oleg Klimov, Alex Nichol, Vicki Pfau

Also highlighted work from OpenAI Robotics & Dota teams

RL² was with Rocky Duan & Pieter Abbeel

