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Abstract Grasping and fixturing are concerned with immobilizing objects. Most
prior work in this area uses a small number of contacts that is sufficient for force
closure. However, for delicate objects or surfaces such as glass or bone (in medical
applications), a larger number of contacts can be used to reduce the forces needed at
each contact to resist applied wrenches. We focus on the problem of choosing a set
of contact points out of a larger set of candidates to optimize grasp quality, which is
defined as the size of the ball in wrench space that can be resisted given a constraint
on each contact force or the sum of the contact forces. In purely geometric terms, our
algorithms select a set of vectors out of a larger set of candidates to maximize the
residual radius of the Minkowski sum or convex hull. We provide a method that is
guaranteed to find near-optimal solutions in linear time. At the core of our approach
are (i) an novel formula for the quality functions, and a discretization technique that
evaluates them with bounded error, (ii) the insight that the resulting problem is a
submodular coverage problem. This allows us to exploit the submodular saturation
algorithm, which has recently been derived for applications in sensor placement.
Our alternative formulas also makes it possible relax the optimization problem into
a linear program, and we give a branch-and-bound procedure for exactly optimizing
the objective. Our approach is applicable in situations with or without friction, for a
large class of friction models. We also show that grasp quality metrics are relevant
to towing (carrying a heavy object with aerial vehicles), and describe how to use the
same methods to find optimal towing configurations.

1 Introduction

The problem of choosing contact points on an object to securely hold it is relevant
to robotics and manufacturing. Robotics is concerned with grasping, where a sin-
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gle robot uses a multi-fingered hand to hold and manipulate an object, or multiple
robots cooperate to pick up a large object. Manufacturing is concerned with fixtur-
ing, where a machinist uses locators and clamps to immobilize a part for operations
such as inspection or machining. In both grasping and fixturing, there are often con-
straints on the forces that can be applied at the contact points.

Most prior work in this area strives to minimize the number of contacts needed
for force closure, known to be four in the plane and seven in three dimensions.
However, for delicate objects or surfaces such as glass or bone, extra contacts can
be used to reduce the forces needed at each contact to resist applied wrenches.

Researchers have proposed a number of approaches to extend the notions of form
and force closure with scalar “quality” measures for grasping or fixturing configu-
rations. We use the wrench-space quality measures proposed by [7] and [S]. These
elegant measures are based on convex geometry and maximize the disturbance that
can be resisted given bounds on the contact forces. See [9]] for a review on quality
metrics. The metrics we consider are as follows:

e (: The norm of the smallest wrench that can’t be resisted, given a constraint on
the sum of the normal forces.

e (..: The norm of the smallest wrench that can’t be resisted, given a constraint on
the maximum normal force.

The notion of norm in wrench space is not well-defined, since the wrench vector
has force and torque components, which have different units. Ferrari and Canny
[5] address this problem by using the length scale of the object as a dimensional
constant that relates forces to torques; we describe a different solution in Section 3]
based on the minimum-volume ellipsoid containing a set of realistic wrenches.

Our main contributions are as follows:

e Novel formulas for Q; and Q.. and their generalizations that incorporate friction.
Fast numerical evaluation of these formulas requires a discretization approxima-
tion for which we provide error bounds.

e A fast algorithm, based on the submodular saturation algorithm, for selection of
the contact points that maximize Q; and Q., which is guaranteed to give a near-
optimal solution. The run-time is roughly linear in the number of candidates and
the number of contacts. Our implementation selects tens of contacts from one
hundred candidates in seconds.

e A branch-and-bound algorithm, which provides the exact solution to the opti-
mization problems. Our implementation solves large problems (choosing tens of
contacts out of one hundred candidates) in minutes.

e A discussion of the problem of placing aerial vehicles for towing and its connec-
tion to grasping with friction.

2 Related Work

The Q) metric for grasping and its geometric interpretation was originally proposed
by Kirkpatrick et al. [7]]. They provided a fast algorithm to find the subset of a set
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of two-dimensional vectors with maximal residual radius (defined in Section [3),
but suggested that this problem is hard in higher-dimensional spaces. A later paper
[12] provides a probabilistic algorithm to optimize the Q| metric in the frictionless
case. Another article investigates fast methods for calculating the Q.. metric but not
optimizing it [[1]]. Pollard [[10] provides a method to find multi-contact grasps near a
given grasp, with no guarantee on optimality.

The problem of contact point selection has also been studied from the perspective
of fixture design. Brost and Goldberg [4] provide an algorithm to find viable peg
and clamp placements in a planar modular fixturing apparatus, and Brost and Peters
[3] extend these results to three dimensions and incorporate quality metrics. These
methods require searching through a large number of configurations—exponential
in the number of contacts. Wang [13] optimizes a different quality metric, which
does not inherently guarantee force closure or force limits, by using the greedy
algorithm on a max-det problem.

3 Background: Geometry of Quality Metrics

In this section, we review the geometric interpretation of Ferrari and Canny’s qual-
ity metrics [S] and introduce some notation. Given k frictionless contact points,
suppose that applying unit normal forces at these contacts generates wrenches
Wi, W2, ..., Wy. Then if we apply normal forces f1, fa,..., fk, the total wrench is

w=) fiw (M

Under the L constraint }; f; < 1, the set of attainable wrenches w is
ConvexHull(0,w;,w>, ..., w). Under the L. constraint max; f; < 1, the set of at-
tainable wrenches is MinkowskiSum(wy,wa, ..., w;). In both cases, the constraint
fi > 0is implied.

The residual radius of a compact set C is defined as the distance from the origin
to the boundary of C, and 0 if C does not contain the origin:

(@)

s (C) = dist(0,R"\C) if0eC
res o otherwise.

The quality metrics, informally defined in the introduction, are formally defined
as follows:

Q1 = rres(ConvexHull(wy,wo, ..., Wy)), 3)
Qoo = Fres(MinkowskiSum(wy, wa, ..., wg)). (C))

These quality metrics can be generalized to the case where there is friction. De-
fine W; as the tolerable set of wrenches that can be produced at the ith contact. For
example, we might specify that the magnitude of the force is no greater than 1. Then,
in analogy with the frictionless case, we define the quality functions as
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01 = rres(ConvexHull(Wy , Wa, ... . W), 5)
Qo = Fres(MinkowskiSum(W;,Ws, ..., Wy)). (6)

Informally, the convex hull is the set where the total effort, summed over contacts,
is constrained; and the Minkowski sum is the set where the effort at each individual
contact is constrained.

Natural norms in wrench space

The quality metrics Q7 and Q.. depend on a norm in wrench space. Since force
and torque have different units, it is not obvious how to define the norm of vectors
in wrench space, so that we can talk about the size of the ball of wrenches that
can be resisted. In the following paragraphs we describe how to define the norm of
wrench space in a natural way that depends on the object being immobilized and the
disturbances applied to it.

Suppose that we know the set of “disturbances”—wrenches that will be applied
to the object during a task. This set will typically include the wrench due to gravity,
and it might contain wrenches arising from forces applied to the surface. If we don’t
know the set of disturbances, we can simply use the contact wrenches. Given this
set of task wrenches, calculate the minimum-volume enclosing ellipsoid for these
points (see [2], 8.4 for a discussion of this problem.) We will change coordinates so
that this ellipsoid becomes a unit ball, where the most extreme points in our set of
expected wrenches will have norm 1.

Specifically, if the ellipsoid is parameterized as

{w]|Aw—x.| <1}. @)

then we transform into normalized coordinates X = Aw, so in our new coordinates,
the ellipsoid is

{x|lx=x| <1}. (8)

For the remainder of this paper, we will be working in the space of normalized
wrenches, but for clarity, we will refer to these normalized wrenches with the let-
ter w. To transform the problem into normalized wrench space, multiply all of the
disturbances and contact wrenches by the matrix A.

We can also interpret the residual radius in normalized wrench space as a safety
margin for the given set of disturbances. By definition, 7y is the scale factor so that
if we blow up the unit sphere by a factor of 7, it lies fully inside the set of tolerable
wrenches that our contacts can resist. In normalized wrench space, the unit sphere
encloses the set of disturbances. Thus if we scale all the disturbances by a factor of
T'res, they lie inside the set of tolerable wrenches.
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4 Alternate Formulation of Quality Metrics

In this section, we present an alternate expression for the residual radius of a convex
set. Besides being efficient to evaluate, this alternate form reveals that the radius
maximization problem can be solved by methods that exploit submodularity, and
the problem can also be relaxed to a linear program.

Our results are as follows. For frictionless contact points,

Q1 = rres(ConvexHull(wy,wy,...,w;)) = min max(y’ w;)" 9)
lyll=1 i
Qoo = Fres(MinkowskiSum(wi, wa,...,w)) = Hrrﬁinlz:(yTwi)+ (10)
Y=t

where ()+ is the “positive part”, i.e.,

= {x if x>0, an

0 otherwise.

For contact points with friction, where the wrenches that can be produced by the ith
contact lie in set W;, we obtain

Q1 = rres(ConvexHull(W, Wa, ..., W;)) = Hrriin1 max iy, (y) (12)
y||= i

Qoo = I'res(MinkowskiSum(Wy, Ws, ... . Wy)) = Hrriinl Y hw,(y), (13)
YI=

where Ay, (y) = maxyew, y' X.

The key concept for deriving these formulas is the support function, illustrated in
Figure I} Given a compact, convex set C and a point y, the support function f¢(y)
is defined as [6]

he(y) = maxy” x. (14)

xeC

For ||y|| = 1, the support function tells us the height of C in the direction y. The
support function has the following properties:

hConvexHull(Cl ,Ca\.eeCp) (y) = m?-XhCi (Y) (15)

IMinkowskiSum(Cy,Ca,...Co) (Y) = th,- (y) (16)

Proposition 1. For compact, convex set C containing the origin,

Ires(C) = ”r;ﬁilll he(y) a7
= min maxy’ x (18)

[yl=1 xeC
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/ W) h(yz)/ Yo

Fig. 1: An illustration of the support function % for a triangular set, evaluated at two
unit vectors y; and y,. The proposition states that the residual radius of the triangle
around O is the smallest value of the support function, which is A(y5).

Proof. See appendix.

Combining this proposition with Equations (T3) and (T6), we obtain the formu-
las in Equations (T2) and (T3, which specialize to Equations (O) and (I0) in the
frictionless case.

We can evaluate these formulas by discretizing the sphere (or hypersphere)
{y | lyll = 1}. The following proposition shows that the error in calculating the
residual radius is bounded by about 1/n if we choose 6n> samples on the 2-sphere
or 12> samples on the 5-sphere, corresponding to the wrench space of 2D or 3D
objects, respectively.

Proposition 2. We can construct a set S, of (2p)nP~! samples of the the (p—1)-
sphere S (a subset of R?), such that the following bound holds:

) : /P
< _ < V2 1
0 _;rélsrnlhc(Y) rynelghc(Y) <o [1%,]| (19)

where X, = argmax ny.
xeC

In the frictionless case, the computational cost of evaluating the quality function
is just due to calculating the matrix of inner products y; - w;. In the frictional case,
we must calculate Ay, (y;) for every contact i and disturbance ;. In general, this
is a convex optimization problem, and under the Coulomb friction model it has a
closed form solution. If contact force f has a normal component f* and tangential
components fl, and the set of contact wrenches is given by

Wi={Gf | |fl| <urt, fH<iy, (20)
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a straightforward calculation shows that

TGl Tl T ol
0 otherwise

where we have written G; = [G;- | GIU] corresponding to the normal and frictional

components.

5 Quality Function Optimization as a Submodular Coverage
Problem

We are given a set S of candidate contact points, where the ith contact generates a
set of object wrenches W; when the maximum force is constrained. We would like
to find a subset S’ C S to optimize the quality function or@ In other words, we
would like to choose the subset of our contact wrench sets W; whose convex hull
or Minkowski sum has maximal residual radius. So we are solving the following
optimization problems:

max Q) = max min maxhy (y), (22)
s'cs s'cS |lyll=1 ies’
max Q. = max min Y hw,(y), (23)
s'cs S'cs yll=1 gy

subject to the cardinality constraint |§'| < k.

Krause et al. [8] introduced the submodular saturation algorithm (henceforth
called SATURATE), which solves problems where we are trying to optimize the
minimum of a collection of objectives:

maxminF;(S'), subject to || < k. (24)

§'cs i
When the functions F; are submodular, there are theoretical performance guarantees
on this algorithm. Namely, if we relax the cardinality constraint to |S'| < ctk (where
o is a parameter depending on the problem) and run the algorithm, then the k-
element solution found by SATURATE is guaranteed to be better than the optimal
k-element solution. SATURATE is very fast, and it involves performing the greedy
algorithm several times with a transformed objective function. See the appendix
for a review of SATURATE. In this paper, we use SATURATE to find suboptimal
solutions to the k-element selection problem, so we do not use .

The expressions max;cg hw,(y) and ¥ ;g hw,(y) are both submodular functions
of the set 8, since max and sum are submodular. Each direction in wrench space y
indexes a different objective function that we are trying to optimize. Therefore, opti-
mization of the quality functions over S’ has exactly the form given in Equation (24),
so SATURATE can be applied to this problem. To apply the algorithm, we need to
calculate Ay, (y ;) for every pair (i, j) consisting of a contact point i and a direction in




8 John D. Schulman and Ken Goldberg and Pieter Abbeel

wrench space j. To evaluate the evaluate the collection of objective functions (one
for each disturbance) when we perform SATURATE, we merely need to take the
max and sum over the columns of a table—a computationally cheap operation. The
computation time of the algorithm is thus O(NKD), where N,K,D are the number
of candidates, the number of contacts, and the number of samples of the sphere in
our discretization.

We describe the process for selecting contact points in the frictionless situation
with SATURATE in Algorithms [T|and 2] below. There are only a couple differences
in the frictional case: (1) W describes the wrenches from frictional as well as normal
forces (which are also converted to normalized coordinates by matrix A), and (2) the
entries H are not given by an inner product, but a support function, e.g. see Equation

21).

Algorithm 1: SelectContactPointsFrictionless

input : contact wrenches W([6,N],
disturbance wrenches Z[6, D]
desired number of contacts K,
quality metric € {Q1, 0w}
discretization resolution p

output: selected indices /, quality Q

A[6,6],x.[6] < MinVolEllipse(Z) ; // See Equation
X[6,N] — AW;
Y[6,M] < SphereSamples(p);
H[M,N] — (YTX)*+; // Support function for each
// (disturbance, contact) pair
h [M] — Y'x.; // Support function of center point
switch quality metric do
case Q) : f(§) = (me;xHi.—hcﬁ; // Hje is the ith row of H
ics'
case Q.. : £(8'):= () Hw—h.)":
s

I[K],Q « Saturate(f, K, {1,2,...,N});

6 A Branch-and-Bound Algorithm for Exact Optimization

In this section, we describe a branch-and-bound algorithm for finding the optimal
solution to the quality function optimization (residual radius maximization) prob-
lem. Branch-and-bound algorithms globally maximize a function over a space of
solutions, and they have the following features:

e A way of splitting the solution space into two or more disjoint subsets. We will
call each subset of the solution space a subproblem.

e A heuristic or suboptimal method for generating a lower bound on the optimal
value.

e A relaxation of the problem, which provides an upper bound on the optimal
value.
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Algorithm 2: Saturate

input : function f: S — RY
number of elements to select K
set of candidates S
output: selected subset ', function value Q

Ib — minf({s1,s2,...,5¢}); // choose K arbitrary elements from S

// to get a lower bound

ub — minf(S); // choose all N elements to get an upper bound

// (assuming f is increasing)

Riter < log(desired precision) ; // we used Riter = 10
for iteration < 1,2, ... nj,, do

¢ — (Ib+ub)/2; // saturation level we are testing

£.(S") := min(f(S'),c); // truncated objectives

§',Q « Greedy(f,,K,S); // using the greedy algorithm, select a

// K-element subset of § to maximize f,
if £(S') = c then // successfully saturated all objectives
| Ib—c

else
L ub+—c

The algorithm constructs a tree with the original problem at the root. The children
of a given subproblem are smaller subproblems, which partition its solution space.
The algorithm searches through this tree, skipping nodes whose upper bound is less
than the greatest lower bound found so far.

In our scheme, we are selecting a k-element subset S’ C S = {1,2,...,N}, and
the branching procedure consists of selecting the next element. It will be convenient
to represent a subset S’ by a length-N vector z, where z; = 1 if i € §', and z; = 0 if
i ¢ S'. A subproblem is defined by the pair (GOOD, BAD) where GOOD is the list of
components of z that are required to be 1, and BAD is the list of components that
are required to be 0. For each subproblem, we calculate the lower and upper bounds,
and, if its upper bound is not dominated by some other subproblem’s lower bound,
we split it into smaller subproblems.

We relax the optimization problem to a linear program by changing the constraint
zi € {0,1} to 0 < z; < 1. For example, for the optimization of Q.., the non-relaxed
optimization problem is

maxmin Y hw,(y;) subject to |S'| =k, (25)
S T ey

which is equivalent to

maxminZhWi (y;)zi, subjectto Zzi =k, z€{0,1}. (26)
Lo es i

The relaxed problem is

maxminZhWi (yj)zi, subjectto Zz,- =k, 0<z<1. 27
U es i
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If the optimal solution to the relaxed problem has z; = {0, 1} for some i, then so will
the optimal solution to the non-relaxed problem. So in the algorithm below, we keep
track of the list of components of z that are required to be O or 1.

Algorithm 3: Branch-and-bound for subset selection

input : Number of candidates N

Number of selections K

functions calcLowerBound, calcUpperBound
output: function value Q°"

indicator vector z°P!

0 oo // Greatest lower bound so far
SubproblemList < [(0,0)] ; // root problem: GOOD and BAD are empty
while notEmpty(SubproblemList) do
(GOOD,BAD) « pop first element of SubproblemList;
QUPPer ZUPPr  calcUpperBound(GOOD, BAD, K);
if Qu/:/zer > leb then
Goop’ «— {i | ;™" =1}; // update GOOD and BAD
BAD' — {i { ;7P =0} ; // based on integer solutions
Qlower glower . calcLowerBound(GOOD', BAD', K);
if Qlower < leb then

leb P Qlower;

Zglb - zlower
MAYBE«— {1,2,...,N}\{GOODUBAD}; // List of candidate to add
fori—1,2,...,length(MAYBE) do

BAD” < BADU{MAYBE;,...,MAYBE,_| };

GOOD” — GOOD U {MAYBE;};

append (GooD”,BAD") to SubproblemList; // add new subproblem

Qopl - leb
Z0Pt Zglb

7 Comparison of SATURATE and optimal solutions

In this section we report the performance and computation time for the algorithms.
These experiments assume frictionless contacts. We focus on the Q.. metric, which
is more relevant to most applications and improves as the number of contacts is
increased. We obtained five 3D models from the Princeton shape database [11]],
chosen fairly arbitrarily to be representative: airplane, shark, brain, gun, and vase,
corresponding to model numbers 1147, 288, 540, 649, and 80, respectively. We ran-
domly selected a subset of 100 faces from each mesh, whose centers would serve as
candidate contact points. Reducing the number of candidates to 100 made it possible
to compare the numerical results from the different objects. We ran four algorithms
on each model: branch-and-bound, SATURATE, and two other non-optimal meth-
ods: (1) random selection, (2) “uniform selection”, which aims to choose a set of
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contacts that are uniformly distributed in wrench spaceﬂ The performance of all
four algorithms is shown in Figure 2]

! -B-0PTIMAL (B&B)
0.9/|"©-SATURATE
-@-UNIFORM
0.8l RANDOM

0.71
061
e ] 0.51
0.4r
0.31

0.21

0.1

I 15 19 23 27 31 35 39
Num. contacts

Fig. 2: Quality metric Q.. as the number of contact points is increased from 7, the
minimum number of frictionless contacts necessary for force closure. The data were
averaged over the five 3D models. Two simpler heuristics, UNIFORM and RAN-
DOM are included for comparison.

As we show in Figure E} SATURATE takes seconds to run, and the branch-and-
bound takes minutes to run. Both algorithms were implemented in MatlabE] As ex-
pected, the run-time of SATURATE is roughly linear in the number of contacts
selected, since it runs a greedy algorithm a fixed number of times. Surprisingly,
branch-and-bound does not become more expensive as the number of contact points
increases, even though the number of possible selections increases exponentially.
Evidently, the algorithm is quite effective at restricting the search space, through
eliminating subproblems with low upper bounds and by finding integer solutions to
the relaxed subproblems.

In Figure 4| we show one of the models (a human brain) under two conditions:
first with no gravity, second with a high amount of gravity. (Recall that gravity shifts
the ball of wrenches that the grasp or fixture must resist.)

! In the uniform procedure, if {wy,Wa, ..., W} is the set of points (in wrench space) chosen already,
then the index i of the next point is chosen as argmax; min;dist(w;, w;), i.e., the point that is
furthest away from all of the previously chosen points.

2 Source code related to this paper, including SATURATE and branch-and-bound, is available at
https://github.com/joschu/isrr20llgrasping
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15- 150
) @
E E
310 £ 100
8 E
[¢] Q
Es 5 50
5 5
T T
0 0
0 10 20 30 40 0 10 20 30 40
Num. contacts Num. contacts
(a) SATURATE (b) Branch-and-bound

Fig. 3: Run-time of SATURATE and branch-and-bound on the five models. Note the
different scales on the y-axes. The computation times for SATURATE are identical
for each model (same number of candidate contact points), but the times vary greatly
for branch-and-bound.

(a) no gravity (b) high gravity

Fig. 4: Contact points chosen by SATURATE as gravity varies.

8 Application to towing

We will show that the methods of this paper can be applied to a different sort of
force closure problem, in which we must arrange several aerial vehicles, such as
helicopters, to tow a heavy object. Each helicopter may be attached to the object
at multiple points with ropes. The helicopters must be able to resist disturbance
wrenches that are applied to the object, but the total force that each helicopter can
exert is limited. Assuming that the ropes that connect a given helicopter to a payload
are all taut, the set of wrenches that helicopter can apply to the payload are a function
of its position. Here, the problem is to optimize the position of the helicopters, to
maximize the radius of the ball in wrench space that they can together resist.

Consider a single helicopter, which is attached to the —
payload with R ropes. For the ith rope, we define the ‘e
following quantities: the force of tension is #;, the force 7
direction is f; (where ||f;|| = 1), and the wrench per unit

A

FaasIE Moy ®

Fig. 5: Towing
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force is w; = (f‘ i’ . ) . Then the total force and wrench
i X T

are
frow = Y1 (28)
i

Wiotal = Ztiwi (29)
i

The set of wrenches that the helicopter may apply to the object is
W= {Wtotal ‘ ||ft0tal|| < 1} (30)

where all the tensions #; > 0. W is a convex set, and we can use the same formalism
we developed earlier for calculating Q.. for a frictional grasp. We can efficiently
evaluate the support function hy (y) for a disturbance y.

As before, there is a set of disturbance wrenches that the towing arrangement
must resist, which is not necessarily centered around the origin—it is centered
around wj,g, Some combination of the wrench due to gravity and the anticipated
inertial forces. By varying wyo,q, we see that different arrangements are optimal. In
the case of a heavy load, where the helicopters can just barely lift the object, they
must be positioned directly above the object. With a light load, a spread-out arrange-
ment is optimal, since it is better for resisting horizontal or rotational disturbances.

(a) light load (b) heavy load (c) medium load with a horizon-
tal component

Fig. 6: Towing arrangements found by SATURATE for different loads. Gray spheres
represent helicopters. Helicopter positions were selected from a set of points on a
spherical surface.

9 Conclusions

We used some tools from convex geometry to find alternate formulas for the classic
quality metrics. Since they are cheap to evaluate, these formulas may be useful in
their own right for fast quality computation, especially in the frictional case. How-
ever, more interestingly, they reveal that the contact point selection problem can be
viewed as a multi-objective submodular coverage problem, and SATURATE pro-
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vides an efficient, near-optimal solution. We found that our algorithm can select a
large number of contact points out of a larger number of candidates in a modest
amount of time. We also provided a branch-and-bound algorithm for exact opti-
mization, which is a couple orders of magnitude slower.

As far as we know, the SATURATE algorithm has exclusively been applied to
problems of sensor placement. Our work shows that it can be used for actuator
placement and may have other applications in engineering design. We must build
our system with a small set of supports so it can survive a set of disturbances.
Each disturbance corresponds to a cost function, which is submodular in the set
of supports. In our work, the supports are contact points and the disturbances are the
wrenches that might be applied to the object. Then, one uses SATURATE to find the
best set of supports to handle the worst-case disturbance.
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Appendix
Proof of proposition 1

Let 7 = rres(C) and 7 = miny—; hc(y). First we show that 7 < 7 because the ball of
radius 7 lies inside of C. Then we show that 7 < 7 using the maximality of 7. Both
of these arguments use the fact that for two convex sets A and B, A C B if and only
if ha < hp (i.e., ha(x) < hp(x) for all x).

Let B, be the ball of radius r around the origin. If # = rs(C), then it follows that
B C C. It follows that kg, (y) < hc(y) for all y. For ||y|| = 1, hg,(y) = 7, so

? < hc(y), for all y such that ||y|| < 1. 31)

It follows that 7 < 7.
Next we’ll prove the other direction of the inequality. It follows from the defini-
tion of 7 that

F<hc(y) forally||=1 (32)
Since hp.(y) = 7 for ||y|| = 1, we have that
hg; (y) < hc(y) forall [ly|| = 1. (33)

Since the 4 is homogeneous, it follows that iz, < hc so we have that B C C. By the
maximality of 7, we must have By C B;. Thus 7 < 7.
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Discretization error in formula for residual radius

We will consider a particular scheme for deterministically sampling the p-dimensional
sphere (a subset of R”*!) and bound the error that results when one evaluates the
support function 4¢(y) at only the sampled points y to approximate its minimum. We
take an n X n X --- X n grid on every p-dimensional facet of the p + 1-dimensional
hypercube. This requires (2p + 2)n? points.

Let y, = argmin/ic(y) be the optimal sampled point, and let y, = argmin/(y)

be the exact optimal point. Let x,, = argmaxygx, and let Oy y denote the angles
xeC
between the vectors v and w.

yTxn = ||X,|| cos Ox, y (34)

d .
EyTxn = —||x, || sin 6, y (35)

By the intermediate value theorem,
YnXn =¥ Xn = — %] sin6A6 (36)
where 0y, x, < 0 < 0y, x,, and A8 = 6y, x, — Oy, x,. Next, note that i(y.) > y'x, so
h(yn) = h(y:) < [[%|sin 6A 6| (37)

The largest possible A 0 occurs at the nearby part of each face, between the vector
(1,0,...,0) and (l,ﬁ, s ﬁ), where cos(A0) = /1 + p/4n?. It follows that

a0 < Y7 (38)
2n
Thus
h(yn) —h(y+) < [[%a|[sin6A 6| (39)
< Il 22 (40)
n

Note that 8 is typically small, since arg max yfx is often nearly parallel to y,,. So the
xeC
error is typically smaller than this bound.

Submodular saturation algorithm

Here we briefly describe the theoretical guarantees on SATURATE. SATURATE
finds solutions to problems where we are simultaneously trying to optimize a col-
lection of submodular objectives F;:
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maxminF;(S'), subject to || <k. (41)
N\

Krause et al. [8] proposed SATURATE, and they showed that if we run it on the
objective (1) and request a ak-element solution §', it is guaranteed to return a
solution that is better than the optimal k-element solution, where

a=1+ log(r?gzi‘ﬁ(s)). (42)

This bound applies when the functions F; take integer values. Thus to apply this re-
sult to a general problem of the form in Equation {#T]), we must typically rescale and
then round the objective functions. In the present problem, we can rescale and round
the values Ay, (y;), o, in the frictionless case yIw;. Note that because of rounding
error, the ak-element solution found by SATURATE might be slightly worse (on
the original objective) than the optimal k-element solution.
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