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Hi. My name is John Schulman, and this presentation is based on joint work with Alex Lee, Jonathan Ho, and Pieter Abbeel.



Goal

= Track deformable objects from point cloud data

= Assumption: we have a physical model of the object

Kinect RGB

Rendering of state estimate
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In this work, we address the problem of continuously estimating the state of a deformable object

This is a hard problem because the object may be mostly occluded by itself or the arms of a human or robot that's manipulating it.

We can deal with these ambiguities by having a good dynamics model and ensuring that the object follows a physically plausible trajectory.

The images here show some of the objects we can track with our method--the top row shows the RGB images from the Kinect, and the bottom shows a rendering of the state
estimate from our tracking algorithm.



Energy Minimization Methods

X: state estimate  y: observation

Etotal(Xa Y) — Einternal(x) + Eexternal(xa Y)

discourage bending  encourage model to
and stretching match up with image

mxin Etotal(X7 y)

Kass, Terzopoulos, Witkin, 1988
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Now I’'m going to give a brief background on some of the methods we build on, starting with energy minimization methods, which were pioneered by Kass, Terz, and Witkin in the
late 80s.

From now on, x is going to denote our state estimate, configuration of a physical model, and y will denote the image or point cloud data.
One defines an internal energy, which discourages bending and stretching of the model, and an external energy, which encourages the model to match up with the image.

People have extended these energy minimization ideas in lots of different directions, exploring different physical models, different methods for finding correspondences, and
different optimization schemes.
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for reference i'm putting energy minimization methods up on the right here
in their simplest form, the probabilistic methods are equivalent

rather than minimizing energy, you maximize e to the negative energy

But in addition, we can now define rich models of noise and uncertainty, in particular, we can introduce unobserved variables z for correspondences--meaning, what parts of the
object correspond to what observations

The three references on the bottom of the slide are some nice examples of using probabilistic models for solving registration problems involving deformable objects.
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To summarize the key challenges, on the observation modeling side, we need to acount for unknown correspondences, noise and occlusions
on the other hand, we have all these physical constraints to enforce, for example, no collisions, no stretching

Probabilistic models have excelled at the observation models, and the energy based methods have excelled at enforcing physical constraints.
But really we'd like to get the best of both worlds.

The the approach I'll present will address all of these challenges through the following contributions:
It uses a probabilistic model that captures all of these factors
[read slide]
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Our approach can work with a wide ragne of physical models-1d,2d,3d models

the algorithm assumes some image and point cloud processing has happened, which distinguishes between object and bacground
but it's not assumed to be perfect

here’s a typical example of what comes out of the preprocessing
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Now I'll describe the probabilistic generative model for the observations. Let's assume this here is the state of the object, and let's see how we can generate an observation.

First we need to see which parts are visible, and we have these variables v1,v2,v3 indicating whether x1,x2,x3 are visible.
Then we generate variable z1 which tells us for our first observation which one of x1,x2,x3 is going to be observed
All of x1,x2,x3 are visible, so it could pick any one of them, and in this example it happened to pick x1 so it'’s 1,0,0

the sensor is noisy, so we get x1 + some gaussian noise, which results in our first measurement y1

this process is now repeated
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Here’s the problem we’re trying to solve--we’re trying to find the most probable state x, and we’ve marginalized out the latent variables z
The standard way to solve problems like this is to use the em algorithm:

you alternate between the e step, where you calculate the posterior distribution of the latent variables z

and the m step, which uses the calculated distribution over z to update x

that doesn’t work for the tracking problem because that would violate the physical constraints.

so let’s reexamine the m step and see what we can do.
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For your reference, here’s the standard M step

The key insight we use is can do this constrained minimization by repeatedly applying forces to our object model in simulation, where the forces are
based on gradient of the objective.

if you move to the maximum this way, you can enforce the physical constraints in your optimization

The steps taken by this minimization procedure have a physical interpretation: these are the dynamics you obtain if you have a physical system where
the -A is the potential energy, and you do simulation steps.

And a damped physical system will converge to a local minimum of the potential energy, so this procedure converges to the local maximum of A.
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In the real time setting, we just do as many EM iterations as possible after each new point cloud is received

That graphical model and iference procedure describes what to do for a single image received, assuming that you have an initial estimate of the state--
you do the EM algoirhm until convergence based on that new image.
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In the real time setting, we just do as many EM iterations as possible after each new point cloud is received

That graphical model and iference procedure describes what to do for a single image received, assuming that you have an initial estimate of the state--
you do the EM algoirhm until convergence based on that new image.
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Here’s a demonstration of our algorithm in action.
The algorithm runs in real time--the next two videos of rope manipulation are just screen-captures of the algorithm running on live data.

However, note that the video is sped up 4x.
Here you can see the algorithm running on rope during knot tying.

By the way, we used bullet physics engine--an open source physics engine designed from games which is also popular in robotics. The nice thing is that then we can just throw
in a robot. now the algorithm knows about the occlusions from the robot, because it's doing raycast, and it knows about the collision and physical interactions between the robot

and rope, which greatly improves the tracking.

The next two videos of cloth were run as part of our ground-truth data collection setup. So they have markers on them and lots of texture because we wanted to see how well it
worked. We actually are using the color here, in a pretty straightforward extension of algorithm | just described to include color--the color makes it work a bit more accurately,
though it works without color too. We're not using all the textures information though, just the LAB color values.



Quantitative Evaluation of Accuracy
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Motion capture
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We also performed quantitative experiments, which enabled us to evaluate the robustness and accuracy of our algorithm.

we lined a rope and a flag with LED markers from a commercial motion capture system and recorded videos of them being manipulated by a human or robot, along with the
ground truth data of the location of all visible markers



Experimental results
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in total, we had 14 video sequences.

We tested them by running the algorithm with the same parameters, of course.
There were a few failure cases, where the tracking got lost, and couldn’t recover, but overall, the tracking algorithm usually managed to track with only a few centimeters mean
error.
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to track an object through deformation
we embed it in a simulation

latent variables match targets to sources
find max of log p by applying forces

we even have a real time implementation
which works for robotic manipulation
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to track an object through deformation
we embed it in a simulation

latent variables match targets to sources
find max of log p by applying forces

we even have a real time implementation
which works for robotic manipulation
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that concludes my talk, thanks for your attention.
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