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Goal

= Track deformable objects from point cloud data

= Assumption: we have a physical model of the object

Kinect RGB

Rendering of state estimate
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Energy Minimization Methods

X: state estimate  y: observation

Etotal(Xa y> — Einternal(X) T Eexternal(X7 Y)

discourage bending  encourage model to
and stretching match up with image

Hl)f;lﬂ Etotal (Xa Y)

Kass, Terzopoulos, Witkin, 1988
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Energy Minimization Methods

X: state estimate  y: observation

Etotal(X7 y> — Einternal(X) T Eexternal(Xa Y)

discourage bending  encourage model to
and stretching match up with image

m}:{in Etotal (Xa Y)
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Wuhrer, Lang, & Shu 2012
Saltzman et al. 2007 Padoy & Hager 2011
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Probabilistic Methods
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Probabilistic Methods

Energy minimization methods

Etotal(Xa Y) — Einternal(X) T Eexternal(xv Y)

HlXiIl Etotal (Xa Y)
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Probabilistic Methods

X: state estimate  y: observation Energy minimization methods

p(X, y) X e—Einternal(X)6—Eexterna1(X7Y) Etotal(Xa y) — Einternal(X) — Eexternal(xa y)

max p(X,y) (MAP estimation) min Etotal (X, Y)
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Probabilistic Methods

X: state estimate  y: observation Energy minimization methods

p(X, y) X e—Einternal(X)6—Eexterna1(X7Y> Etotal(Xa y) — Einternal(X) — Eexternal(xa y)

max p(X,y) (MAP estimation) min Etotal (X, Y)

—E
p(x,y) Z e~ Flxy.2) z: correspondences
Z
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Probabilistic Methods

X: state estimate  y: observation

p(X y) X e_Einternal(x)e_Eexternal(X7Y)
Y

max p(X,y) (MAP estimation)

Myronenko & Song 2007
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Energy minimization methods

Etotal(Xa Y) — Einternal(x) + Eeﬁernal(x? Y)

Hlxiﬂ Etotal(Xv Y)
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Hahnel, Thrun & Burgard 2003

Cagniart, Boyer, & llic 2010




Challenges
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Challenges

= QObservation modeling:
= correspondence problem
" noise

= occlusions
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Challenges

= QObservation modeling:
= correspondence problem
" noise
= occlusions

" Physical constraints:

" non-penetration

= hard constraints on bending
and stretching
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Challenges Contributions

" QObservation modeling:
= correspondence problem
" noise
= occlusions

= Physical constraints:

" non-penetration

= hard constraints on bending
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Challenges Contributions

" QObservation modeling: * Modeling contribution:
= correspondence problem = Probabilistic model that captures correspondence
= noise problem, noise, and occlusions

m occlusions

= Physical constraints:

" non-penetration

= hard constraints on bending
and stretching
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Challenges Contributions

" QObservation modeling: * Modeling contribution:
= correspondence problem = Probabilistic model that captures correspondence
= noise problem, noise, and occlusions
= occlusions = Algorithmic contribution:

= Physical constraints: » Modification of the EM algorithm that accounts

= non-penetration for physical constraints

= hard constraints on bending = QOperates by only introducing external forces into
and stretching physics simulation engines

Thursday, July 4, 13



Preliminaries
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Preliminaries

= Physical models
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Preliminaries

= Physical models

* |[mage / point cloud processing

= background subtraction (may have false positives & negatives)
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Observation Model

camera _
: Graphical model
E — - e
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Observation Model

camera
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Graphical model
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Observation Model

camera _
: Graphical model
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EM Algorithm
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EM Algorithm

= MAP inference problem:

arg max log p(x,y) = arg max log Z p(X,y,2)
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EM Algorithm

= MAP inference problem:
arg max log p(x,y) = arg max log Zp(x, y,Z)

= Fori=1,2,3,...

Thursday, July 4, 13



EM Algorithm

= MAP inference problem:
arg max log p(x,y) = arg max log Zp(x, y,Z)
= Fori=1,2,3,...

Calculate posterior of

EStep:  ¢\(z) = p(z|x"V,y) atent variables
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EM Algorithm

= MAP inference problem:
arg max log p(x,y) = arg max log Zp(x, y,Z)
= Fori=1,2,3,...

Calculate posterior of

EStep:  ¢\(z) = p(z|x"V,y) atent variables

Maximize a lower bound

MStep:  x'% = arg max Ay (x) to log-probability

Ay (x Zq(z )log p(x,y,2) + S(¢") <logp(x,y)
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Modified M Step
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Modified M Step

= Standard M step (it" iteration)

x'Y = arg max Ao (x)
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Modified M Step

= Standard M step (it" iteration)
x'Y = arg max Ao (x)
X

= M step with physical constraints:

= Repeatedly apply forces in gradient direction (+ damping) until convergence

£y, = vXkACI(X) — Ox
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Modified M Step

= Standard M step (it" iteration)
x'Y = arg max Ao (x)
X

= M step with physical constraints:

= Repeatedly apply forces in gradient direction (+ damping) until convergence

), = vXkAQ(X) — Ox

= physical interpretation:
" simulating a system where -4 ;) (x) is the potential energy,
= damped physical system converges to local minimum of potential energy
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Real-time Implementation
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Real-time Implementation

= For time t=1,2,...
" |terate until next point cloud received:

= E Step
= M Step
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Demo video
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Quantitative Evaluation of Accuracy

* PHASESPACE )

Motion capture
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Experimental results
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Experimental results

= 14 different tasks

*= human manipulates rope
" robot manipulates rope

" human manipulates cloth

Thursday, July 4, 13



Experimental results

= 14 different tasks

*= human manipulates rope
" robot manipulates rope

" human manipulates cloth

= Succeeds on 13/14 tasks with 2.5cm mean
error on successful runs
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Summary

= Modeling contribution:

= Probabilistic model that captures correspondence
problem, noise, and occlusions
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Summary

= Modeling contribution:
= Probabilistic model that captures correspondence
problem, noise, and occlusions

= Algorithmic contribution:

= Modification of the EM algorithm that can account for
physical constraints

= QOperates by only introducing external forces into physics
simulation engines

= Use your favorite physics engine!
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Summary

Modeling contribution:
= Probabilistic model that captures correspondence
problem, noise, and occlusions

Algorithmic contribution:

= Modification of the EM algorithm that can account for
physical constraints

= QOperates by only introducing external forces into physics
simulation engines

= Use your favorite physics engine!

Implementation runs in real-time on standard
computer
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Thanks

=  Acknowledgements

= Financial support: Intel, AFOSR-YIP
= QOpen-source software: Bullet, PCL, OpenCV, ROS, OpenRAVE

= Code, data, paper:
= http://rll.berkeley.edu/tracking

=  Contact

= John Schulman: joschu@eecs.berkeley.edu
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