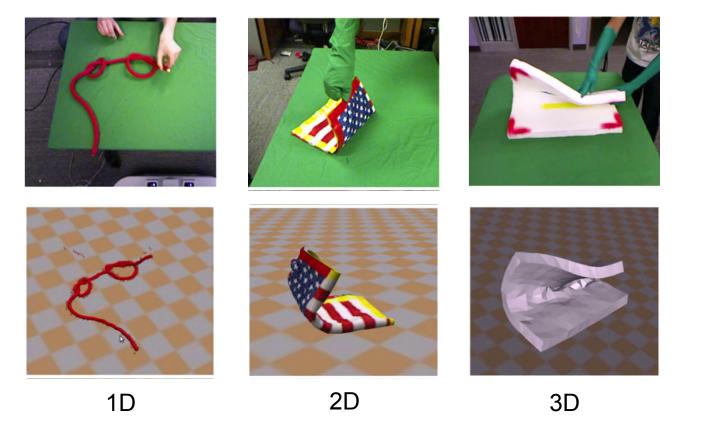
Tracking Deformable Objects with Point Clouds

John Schulman, Alex Lee, Jonathan Ho, Pieter Abbeel

UC Berkeley, EECS Department

Goal

- Track deformable objects from point cloud data
- Assumption: we have a physical model of the object



Kinect RGB

Rendering of state estimate

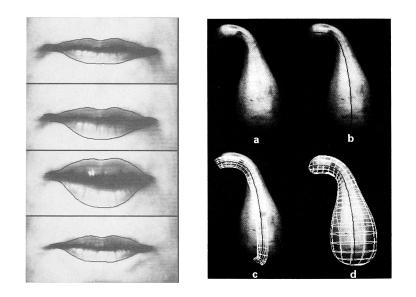
Energy Minimization Methods

x: state estimate **y**: observation

$$E_{\text{total}}(\mathbf{x}, \mathbf{y}) = E_{\text{internal}}(\mathbf{x}) + E_{\text{external}}(\mathbf{x}, \mathbf{y})$$

discourage bending and stretching

encourage model to match up with image



Kass, Terzopoulos, Witkin, 1988

 $\min_{\mathbf{x}} E_{\text{total}}(\mathbf{x}, \mathbf{y})$

Energy Minimization Methods

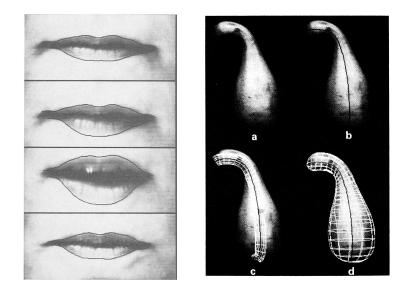
x: state estimate **y**: observation

 $\min_{\mathbf{x}} E_{\text{total}}(\mathbf{x}, \mathbf{y})$

$$E_{\text{total}}(\mathbf{x}, \mathbf{y}) = E_{\text{internal}}(\mathbf{x}) + E_{\text{external}}(\mathbf{x}, \mathbf{y})$$

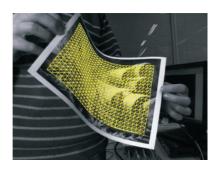
discourage bending and stretching

encourage model to match up with image

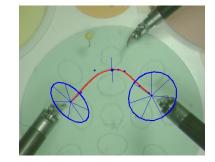


Kass, Terzopoulos, Witkin, 1988

Wuhrer, Lang, & Shu 2012



Saltzman et al. 2007



Padoy & Hager 2011

Energy minimization methods

 $E_{\text{total}}(\mathbf{x}, \mathbf{y}) = E_{\text{internal}}(\mathbf{x}) + E_{\text{external}}(\mathbf{x}, \mathbf{y})$

 $\min_{\mathbf{x}} E_{\text{total}}(\mathbf{x}, \mathbf{y})$

x: state estimate **y**: observation $p(\mathbf{x}, \mathbf{y}) \propto e^{-E_{\text{internal}}(\mathbf{x})} e^{-E_{\text{external}}(\mathbf{x}, \mathbf{y})}$ $\max p(\mathbf{x}, \mathbf{y})$ (MAP estimation)

Energy minimization methods $E_{\text{total}}(\mathbf{x}, \mathbf{y}) = E_{\text{internal}}(\mathbf{x}) + E_{\text{external}}(\mathbf{x}, \mathbf{y})$

 $\min E_{\text{total}}(\mathbf{x}, \mathbf{y})$ \mathbf{X}

x: state estimate**y**: observation $p(\mathbf{x}, \mathbf{y}) \propto e^{-E_{internal}(\mathbf{x})}e^{-E_{external}(\mathbf{x}, \mathbf{y})}$ $\max_{\mathbf{x}} p(\mathbf{x}, \mathbf{y})$ (MAP estimation)

Energy minimization methods

$$E_{\text{total}}(\mathbf{x}, \mathbf{y}) = E_{\text{internal}}(\mathbf{x}) + E_{\text{external}}(\mathbf{x}, \mathbf{y})$$

 $\min_{\mathbf{x}} E_{\text{total}}(\mathbf{x}, \mathbf{y})$

$$p(\mathbf{x}, \mathbf{y}) \propto \sum_{\mathbf{z}} e^{-E(\mathbf{x}, \mathbf{y}, \mathbf{z})}$$

z: correspondences

x: state estimatey: observation $p(\mathbf{x}, \mathbf{y}) \propto e^{-E_{internal}(\mathbf{x})}e^{-E_{external}(\mathbf{x}, \mathbf{y})}$ $\max_{\mathbf{x}} p(\mathbf{x}, \mathbf{y})$ (MAP estimation)

Energy minimization methods

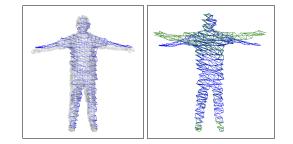
$$E_{\text{total}}(\mathbf{x}, \mathbf{y}) = E_{\text{internal}}(\mathbf{x}) + E_{\text{external}}(\mathbf{x}, \mathbf{y})$$

 $\min_{\mathbf{x}} E_{\text{total}}(\mathbf{x}, \mathbf{y})$

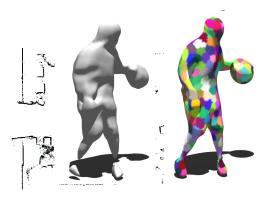
$$p(\mathbf{x}, \mathbf{y}) \propto \sum_{\mathbf{z}} e^{-E(\mathbf{x}, \mathbf{y}, \mathbf{z})}$$

Myronenko & Song 2007

z: correspondences



Hahnel, Thrun & Burgard 2003



Cagniart, Boyer, & Ilic 2010

Challenges

Challenges

- Observation modeling:
 - correspondence problem
 - noise
 - occlusions

Challenges

- Observation modeling:
 - correspondence problem
 - noise
 - occlusions
- Physical constraints:
 - non-penetration
 - hard constraints on bending and stretching

Challenges Contributions

- Observation modeling:
 - correspondence problem
 - noise
 - occlusions
- Physical constraints:
 - non-penetration
 - hard constraints on bending and stretching

Challenges Contributions

- Observation modeling:
 - correspondence problem
 - noise
 - occlusions
- Physical constraints:
 - non-penetration
 - hard constraints on bending and stretching

- Modeling contribution:
 - Probabilistic model that captures correspondence problem, noise, and occlusions

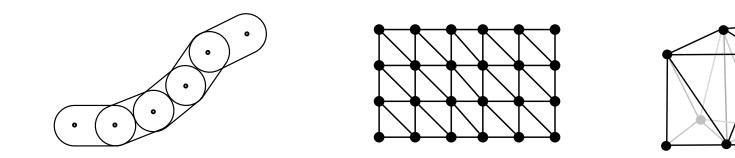
Challenges Contributions

- Observation modeling:
 - correspondence problem
 - noise
 - occlusions
- Physical constraints:
 - non-penetration
 - hard constraints on bending and stretching

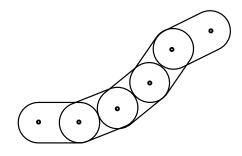
Modeling contribution:

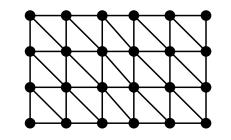
- Probabilistic model that captures correspondence problem, noise, and occlusions
- Algorithmic contribution:
 - Modification of the EM algorithm that accounts for physical constraints
 - Operates by only introducing external forces into physics simulation engines

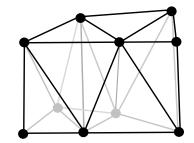
Preliminaries



Preliminaries

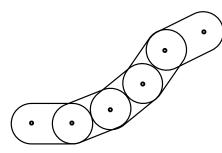


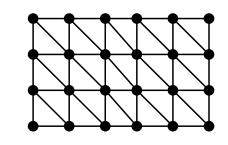


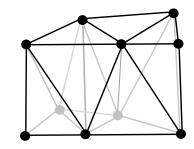


Preliminaries

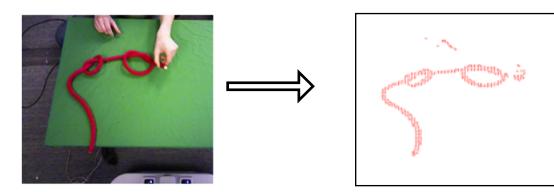
Physical models



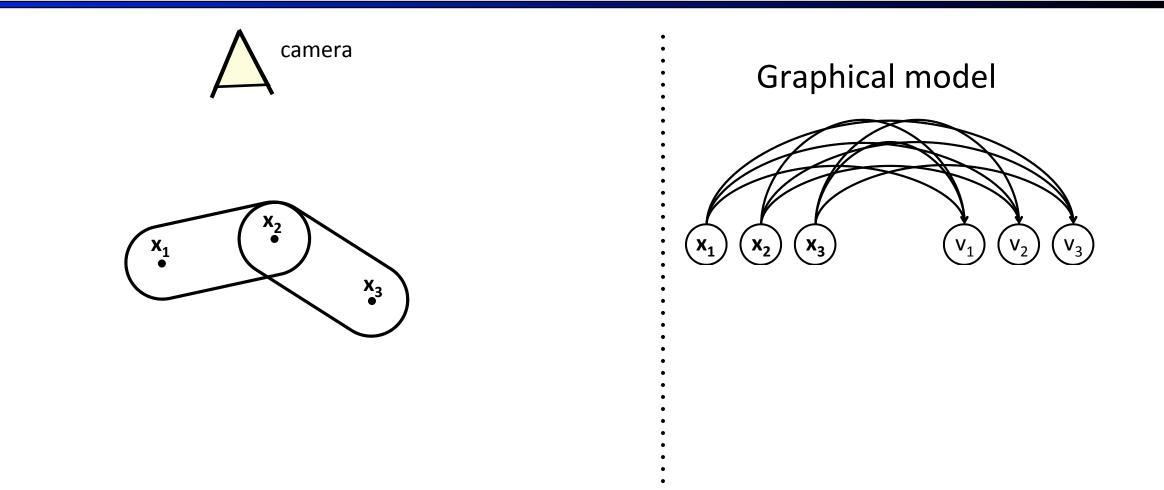




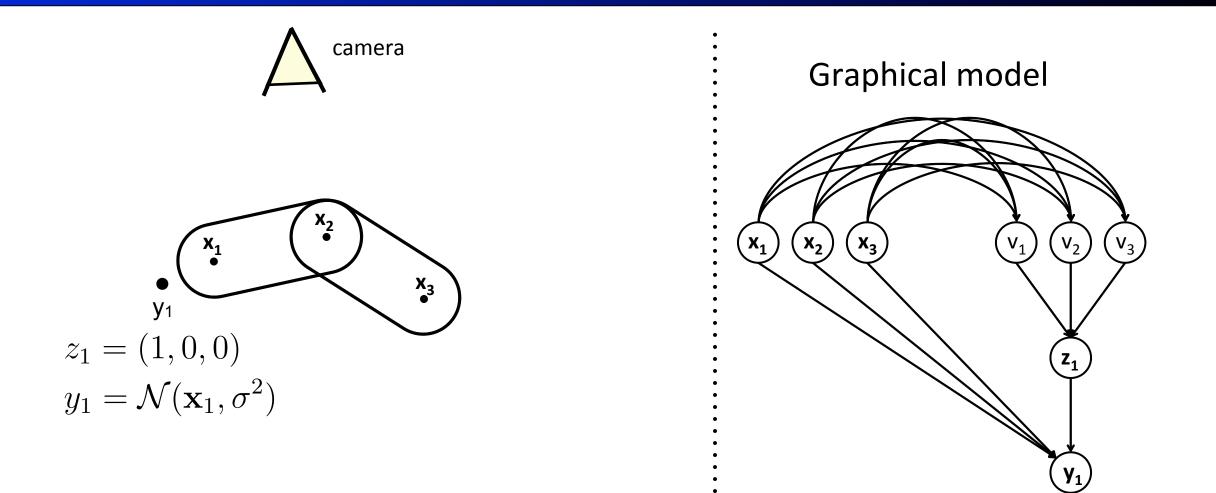
- Image / point cloud processing
 - background subtraction (may have false positives & negatives)



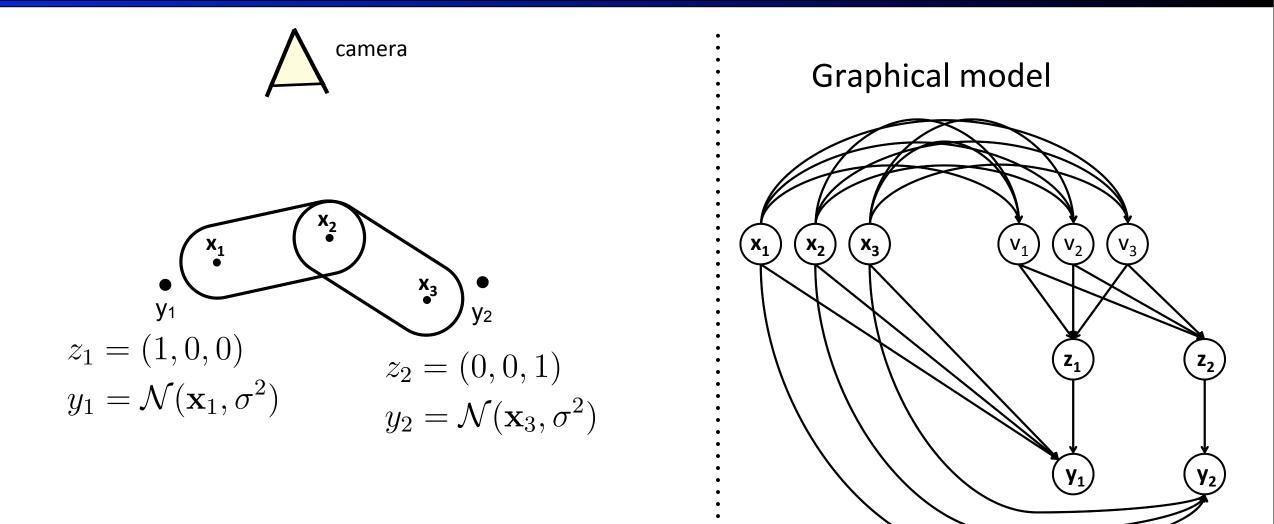
Observation Model



Observation Model



Observation Model



MAP inference problem:

$$\arg\max_{\mathbf{x}} \log p(\mathbf{x}, \mathbf{y}) = \arg\max_{\mathbf{x}} \log \sum_{\mathbf{z}} p(\mathbf{x}, \mathbf{y}, \mathbf{z})$$

MAP inference problem:

$$\arg\max_{\mathbf{x}} \log p(\mathbf{x}, \mathbf{y}) = \arg\max_{\mathbf{x}} \log \sum_{\mathbf{z}} p(\mathbf{x}, \mathbf{y}, \mathbf{z})$$

• For i=1,2,3,...

MAP inference problem:

$$\arg\max_{\mathbf{x}} \log p(\mathbf{x}, \mathbf{y}) = \arg\max_{\mathbf{x}} \log \sum_{\mathbf{z}} p(\mathbf{x}, \mathbf{y}, \mathbf{z})$$

• For i=1,2,3,...

E Step:
$$q^{(i)}(\mathbf{z}) = p(\mathbf{z}|\mathbf{x}^{(i-1)}, \mathbf{y})$$

Calculate posterior of latent variables

MAP inference problem:

$$\arg\max_{\mathbf{x}} \log p(\mathbf{x}, \mathbf{y}) = \arg\max_{\mathbf{x}} \log \sum_{\mathbf{z}} p(\mathbf{x}, \mathbf{y}, \mathbf{z})$$

• For i=1,2,3,...

E Step:
$$q^{(i)}(\mathbf{z}) = p(\mathbf{z}|\mathbf{x}^{(i-1)}, \mathbf{y})$$

M Step: $\mathbf{x}^{(i)} = \arg \max_{\mathbf{x}} A_{q^{(i)}}(\mathbf{x})$

Calculate posterior of latent variables

Maximize a lower bound to log-probability

$$A_{q^{(i)}}(\mathbf{x}) = \sum_{\mathbf{z}} q^{(i)}(\mathbf{z}) \log p(\mathbf{x}, \mathbf{y}, \mathbf{z}) + S(q^{(i)}) \le \log p(\mathbf{x}, \mathbf{y})$$

Thursday, July 4, 13

Standard M step (ith iteration)

$$\mathbf{x}^{(i)} = \arg\max_{\mathbf{x}} A_{q^{(i)}}(\mathbf{x})$$

Standard M step (ith iteration)

$$\mathbf{x}^{(i)} = \arg\max_{\mathbf{x}} A_{q^{(i)}}(\mathbf{x})$$

- M step with physical constraints:
 - Repeatedly apply forces in gradient direction (+ damping) until convergence

$$\mathbf{f}_k = \nabla_{\mathbf{x}_k} A_q(\mathbf{x}) - \beta \dot{\mathbf{x}}$$

Standard M step (ith iteration)

$$\mathbf{x}^{(i)} = \arg\max_{\mathbf{x}} A_{q^{(i)}}(\mathbf{x})$$

- M step with physical constraints:
 - Repeatedly apply forces in gradient direction (+ damping) until convergence

$$\mathbf{f}_k = \nabla_{\mathbf{x}_k} A_q(\mathbf{x}) - \beta \dot{\mathbf{x}}$$

- physical interpretation:
 - ${\ }$ simulating a system where - $A_{q^{(i)}}({\mathbf x})\,$ is the potential energy,
 - damped physical system converges to local minimum of potential energy

Real-time Implementation

Real-time Implementation

• For time t=1,2,...

- Iterate until next point cloud received:
 - E Step
 - M Step

Demo video

Quantitative Evaluation of Accuracy

Thursday, July 4, 13

Experimental results

Experimental results

14 different tasks

- human manipulates rope
- robot manipulates rope
- human manipulates cloth

Experimental results

14 different tasks

- human manipulates rope
- robot manipulates rope
- human manipulates cloth
- Succeeds on 13/14 tasks with 2.5cm mean error on successful runs

- Modeling contribution:
 - Probabilistic model that captures correspondence problem, noise, and occlusions

- Modeling contribution:
 - Probabilistic model that captures correspondence problem, noise, and occlusions
- Algorithmic contribution:
 - Modification of the EM algorithm that can account for physical constraints
 - Operates by only introducing external forces into physics simulation engines
 - Use your favorite physics engine!

- Modeling contribution:
 - Probabilistic model that captures correspondence problem, noise, and occlusions
- Algorithmic contribution:
 - Modification of the EM algorithm that can account for physical constraints
 - Operates by only introducing external forces into physics simulation engines
 - Use your favorite physics engine!
- Implementation runs in real-time on standard computer

- Acknowledgements
 - Financial support: Intel, AFOSR-YIP
 - Open-source software: Bullet, PCL, OpenCV, ROS, OpenRAVE
- Code, data, paper:
 - http://rll.berkeley.edu/tracking
- Contact
 - John Schulman: joschu@eecs.berkeley.edu

- Acknowledgements
 - Financial support: Intel, AFOSR-YIP
 - Open-source software: Bullet, PCL, OpenCV, ROS, OpenRAVE
- Code, data, paper:
 - http://rll.berkeley.edu/tracking
- Contact
 - John Schulman: joschu@eecs.berkeley.edu

- Acknowledgements
 - Financial support: Intel, AFOSR-YIP
 - Open-source software: Bullet, PCL, OpenCV, ROS, OpenRAVE
- Code, data, paper:
 - http://rll.berkeley.edu/tracking
- Contact
 - John Schulman: joschu@eecs.berkeley.edu

- Acknowledgements
 - Financial support: Intel, AFOSR-YIP
 - Open-source software: Bullet, PCL, OpenCV, ROS, OpenRAVE
- Code, data, paper:
 - http://rll.berkeley.edu/tracking
- Contact
 - John Schulman: joschu@eecs.berkeley.edu

- Acknowledgements
 - Financial support: Intel, AFOSR-YIP
 - Open-source software: Bullet, PCL, OpenCV, ROS, OpenRAVE
- Code, data, paper:
 - http://rll.berkeley.edu/tracking
- Contact
 - John Schulman: joschu@eecs.berkeley.edu

- Acknowledgements
 - Financial support: Intel, AFOSR-YIP
 - Open-source software: Bullet, PCL, OpenCV, ROS, OpenRAVE
- Code, data, paper:
 - http://rll.berkeley.edu/tracking
- Contact
 - John Schulman: joschu@eecs.berkeley.edu

- Acknowledgements
 - Financial support: Intel, AFOSR-YIP
 - Open-source software: Bullet, PCL, OpenCV, ROS, OpenRAVE
- Code, data, paper:
 - http://rll.berkeley.edu/tracking
- Contact
 - John Schulman: joschu@eecs.berkeley.edu

- Acknowledgements
 - Financial support: Intel, AFOSR-YIP
 - Open-source software: Bullet, PCL, OpenCV, ROS, OpenRAVE
- Code, data, paper:
 - http://rll.berkeley.edu/tracking
- Contact
 - John Schulman: joschu@eecs.berkeley.edu

- Acknowledgements
 - Financial support: Intel, AFOSR-YIP
 - Open-source software: Bullet, PCL, OpenCV, ROS, OpenRAVE
- Code, data, paper:
 - http://rll.berkeley.edu/tracking
- Contact
 - John Schulman: joschu@eecs.berkeley.edu