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Abstract— Suturing is an important, yet time-consuming part
of surgery; a fast and robust autonomous procedure could
reduce surgeon fatigue, shorten operation times, and enable
remote tele-surgery. We present an approach that enables
robots to learn to suture from human demonstrations. Our
approach uses demonstrated trajectories as input to a closed-
loop procedure which repeatedly adapts them to a previously
unseen suturing environment.

We use the trajectory transfer procedure proposed by the
authors in a recent paper [13]; the key idea is to use non-rigid
registration to find a 3D warping function which maps the
demonstration scene onto the test scene, then use this function
to transform the end-effector trajectory. Then a joint trajectory
is generated by solving a trajectory optimization problem.

A first set of experiments in simulation and reality tested
to what extent a single demonstration can be generalized to
a variety of different initial conditions of the suturing scene.
Our simulation experiments had a Raven II [6] suturing two
flaps of tissue together. Our real-world experiments had a
PR2 robot performing sutures in a scaled-up experimental
setup. The simulation experiments were fully autonomous, but
the real-world experiments required some human input for
the perception. The success rate for learning from a single
demonstration is nearly 100% for moderate perturbations
from the demonstration’s initial conditions, and it gradually
decreases for larger perturbations. A second set of experiments,
performed in simulation only, show that adding demonstrations
from different initial conditions can increase success rate by
better covering the state space. We can obtain these extra
demonstrations using a “bootstrapping” procedure that uses
successful autonomous executions as demonstrations.

I. INTRODUCTION

Robotic systems for minimally invasive surgery, such
as the da Vinci R© system, are becoming increasingly
widespread. Currently, these systems are operated in master-
slave mode—the surgeon completely controls the movement
of the robot. There are several reasons why it would be use-
ful to perform some surgical subtasks—such as suturing—
autonomously. First of all, some automation of repetitive
tasks would give the surgeon much-needed rest and reduce
fatigue, which is a serious consideration in operations that
take many hours. Secondly, computer control could enable
these tasks to be performed faster and more precisely by
overcoming the inherent limitations of the human nervous
system for speed and precision of motion. Third, autonomous
low-level control would enable tele-surgery over long dis-
tances, so a surgeon could operate on a patient in a remote
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location hundreds of miles away. In these settings, trans-
mission delays substantially degrade the surgeon’s ability
to perform continuous control. On the other hand, it is
completely feasible for a surgeon to intermittently issue high-
level commands, like “cut here”, “suture here”, which would
then be controlled at a finer timescale by software.

Suturing, along with other surgical tasks, is very chal-
lenging to perform autonomously. It requires a long series
of complex motions, and the margin of error is small. The
operating environment, including the tissue to be sutured,
may widely vary in position, shape, and material properties.
Since the environment is so deformable, it is hard to perform
a task repeatably without continually updating the planned
movement based on perception.

Building on recent advances in learning from demonstra-
tions and trajectory optimization, this paper presents promis-
ing results that bring us closer to real-world autonomous
suturing capabilities. At the core of our procedure is the tra-
jectory transfer algorithm recently proposed by the authors
in [13], which takes trajectories from human demonstrations
and adapts them to a new environment geometry.

Our experiments show that a single demonstration (pro-
vided by a human) can be generalized to a variety of initial
conditions, for a simplified suturing scenario in reality and
simulation.

Videos of our results are available at:
http://rll.berkeley.edu/suturing

II. RELATED WORK

Some of the earliest work on automating laparoscopic
procedures was performed by Kang et al. [7], [8], though
that work focuses on the mechanical design and low-level
control of a surgical robot. Recent work has addressed tying
knots in the surgical setting based on human demonstrations.
Mayer et al. [9] used ideas from fluid dynamics to modify
trajectories to avoid obstacles. van den Berg et al. [14] used
an iterative learning procedure to learn to tie an overhand
knot rapidly with an imprecise robot. However, none of the
aforementioned work addresses the problem of adapting the
motion based on vision to match the current environment.

The core topics relevant to the current work are robotic
programming by demonstration and trajectory optimization,
where this work is closely based on the methods of [13] and
[12], respectively. We refer the reader to the Related Work
sections of those two papers for a comprehensive review of
these topics.

http://rll.berkeley.edu/suturing


III. BACKGROUND

A. Trajectory transfer

Our method for generating end-effector trajectories in this
work is based on the previous work of the authors in [13].
This section reviews that method; but the reader is referred
to the original paper for a more complete exposition. The
overall idea is to take the geometry data from perception
and find a smooth transformation f : R3 → R3 that maps
from the demonstration scene onto the test scene. Then this
mapping is used to transform the end-effector trajectory from
the demonstration, obtaining a new trajectory that matches
the test scene’s geometry. The transformation is chosen
based on an an objective that encourages low fit error and
rigidness (i.e., encourage the transformation to be nearly a
rigid transformation).

The procedure for generating a trajectory, by generalizing
a demonstration to the new “test” scene, is as follows:

Step 1: Find a transformation f from the demonstration
scene to the test scene. Specifically, we assume that there
is a list of 3D keypoints p1,p2, . . . ,pK in the demon-
stration scene, and there is list of corresponding keypoints
p′1,p

′
2, . . . ,p

′
K in the test scene. We use the method of

thin plate splines [5], [15] to find a function f mapping
p1,p2, . . . ,pK to their partners p′1,p

′
2, . . . ,p

′
K .

The method of thin plate splines solves the following
optimization problem:

minimize
f

K∑

i=1

‖p′i − pi‖2 + REGULARIZER(f) (1)

f is required to be an expansion in terms of radial basis
functions

f(x) =

K∑

i=1

aiK(x,xi) +Bx+ c (2)

where K is the 3D thin plate spline kernel K(x,x′) = −‖x−
x′‖. The regularization term takes the form

REGULARIZER(f) = λ tr(ATKA) + β‖ log s‖2 (3)

where s is the vector of singular values of f and λ, β are
parameters, and K is the kernel matrix. This regularization
term encourages B to be a rotation with unit singular values.
(This regularization on the singular values is not typically
used with thin plate splines, so we had to modify the fitting
procedure to account for it. See our technical report [11] for
details.)

Step 2: Apply transformation f to the demonstrated grip-
per trajectory. The gripper poses along the demonstration tra-
jectory are specified by positions p1, . . . ,pT and orientations
R1, . . . ,RT . We transform the positions and orientations as
follows, to adapt the trajectory to the test situation:

pt → f(pt) (4)

Rt → orth
(
Jf (pt)Rt

)
. (5)

Here, Jf is the 3× 3 Jacobian matrix

Jf =



∂fx/∂x ∂fx/∂y ∂fx/∂z
∂fy/∂x ∂fy/∂y ∂fy/∂z
∂fz/∂x ∂fz/∂y ∂fz/∂z


 , (6)

and orth(·) is a function that orthonormalizes a 3×3 matrix
(e.g. using the SVD).

Equation (4) says that we apply the warping function f
to all of the positions. As for rotations, the natural way to
transform a vector v at a point p through a function f is to
multiply it by Jf (p), the Jacobian. Equation (5) applies this
transformation to the x, y, and z axes of the gripper (which
are the columns of matrix Rt), and then orthogonalizes the
resulting basis so it corresponds to a gripper pose.

Step 3: Convert the end-effector trajectory into a joint
trajectory. To enable the robot to follow the trajectory as
closely as possible while satisfying constraints, we formulate
the following optimization problem on the joint trajectory
θ1:T :

minimize
θ1,...,θT

[
T−1∑

t=1

‖θt+1 − θt‖2 + µ

T∑

t=1

‖ err
(
T̃−1t · fk(θt)

)
‖`1

]

subject to
No collisions, with safety margin dsafe
θmin ≤ θ1:T ≤ θmax (Joint limits)

Here, T̃t is the desired end-effector pose at time t, fk(·)
indicates the robot’s forward kinematics function applied to
θt, and µ is a scalar parameter. err(·) is an error function
that maps a pose in SE(3) to an error vector in R6. In
particular, after decomposing a pose T into translation p
and quaternion rotation q, the error vector is simply given
by (px, py, pz, qx, qy, qz), i.e., the translation and the rotation
part of the quaternion.

We will illustrate steps 1 and 2 of the above procedure with
a two-dimensional toy example, where the task is to draw a
two-dimensional curve through four guide-points. Note that
this example merely illustrates the transformation of end-
effector positions, not orientations. The left image of Figure
1 shows the training situation, environment shown in solid
lines, gripper tip trajectory shown as a dotted line, coordinate
grid lines shown as thin solid lines. The right image shows
the test situation for which we want to predict a good gripper
trajectory. The registered points are the four corners. First,
we use the method of thin plate splines [15] to find a function
that maps the four corners of the square in the training
situation to the four vertices of the new quadrilateral. Then
we applied the found warping function to the demonstrated
path to obtain a new path (dotted line), which has the same
topological characteristics. The warped coordinate-grid lines
are shown.

IV. TECHNICAL DETAILS OF ALGORITHM

The training time and testing time procedures performed in
our real-world experiments are described below. A schematic
of the procedure applied at testing time is shown in Figure
2. The overall procedure used in the simulation experiments



Fig. 1. Illustration of trajectory warping procedure on a cartoon 2-D
example. Left: training situation. Right: testing situation.

was similar, except that we used the dense non-rigid registra-
tion method described in our previous work [13], using a set
of points on the rope and tissue that were directly obtained
from the simulation state.

A. Training and annotation procedure

At training time, we record a single high-quality demon-
stration of the complete task. This recording includes the
joint states of the robot and a RGBD video of the task
execution, recorded from a fixed camera.1

After data collection, we manually annotate the trajectory.
We first break it into segments. The segment boundaries are
chosen qualitatively, where the main consideration is that the
subsequent movement can be executed in open loop based
on the 3D data obtained at the beginning of the trajectory.
Some examples of segments are as follows:
• Pick up the suture needle
• Grab the suture thread and pull it to tighten
• Wrap the suture thread around the wrist.
For each segment, we manually select a set of 3D key-

points in the demonstration scene. These keypoints indicate
the parts of the scene that are most relevant to the next
segment of the manipulation task. In our tasks, we use
between zero and five keypoints. For example, K = 0
during knot tying for wrapping the thread around the robot
arm, since no targets in the environment are relevant for the
motion (except for collision avoidance, which is accounted
for separately). K = 1 for grabbing the needle–the only
keypoint is the tip of the needle (though we added in extra
keypoints around the tip as described in the next paragraph.)

In some cases, we added in extra keypoints to constrain
the first derivative of f in addition to its value. For some
keypoints, we can measure the surface normal at the source
and target location. Let us denote the source and target points
and their normals by (p, n̂) and (p′, n̂′). Then we add in the
following extra keypoint pair:

p+ εn̂↔ p′ + εn̂′ (7)

where we used ε = 1 cm. For other keypoints we can
measure a local coordinate frame. For example, when grab-
bing the needle, we used its entire frame. Let us denote

1In our PR2 experiments, the camera was a Xtion-Pro mounted to the
robot’s head. We anticipate that the methods we describe will straightfor-
wardly generalize to a setting where 3D information is obtained through
stereo.

positions and orientation 3x3 matrices by (p,
(
x̂ ŷ ẑ

)
),

(p′,
(
x̂′ ŷ′ ẑ′

)
). Then we add three extra keypoint pairs

p+ εx̂↔ p′ + εx̂′ (8)
p+ εŷ↔ p′ + εŷ′ (9)
p+ εẑ↔ p′ + εẑ′ (10)

These extra keypoints for the source geometry are illustrated
in Figure 3.

B. Keypoint detection at testing time

At testing time, the robot executes the same sequence of
trajectory segments that were demonstrated at training time.
Consider, for example, the retraction maneuver, where the
robot grabs a flap of tissue and lifts it up. At training time,
we labeled five keypoints x1,x2,x3,x4,x5—three on the
cut and one at each piercing location. To fit a transformation
between the demonstration and current scene as described
in Section III-A, we need to find five corresponding points
x′1,x

′
2,x
′
3,x
′
4,x
′
5, in the test scene.

In our PR2 experiments, we had a human in the loop,
clicking on all of the relevant keypoints for a given segment.
We anticipate that in an actual surgical assistance system,
some human guidance would be desirable: the surgeon would
label where to suture, and a vision algorithm would track
these keypoints over time. We plan to incorporate tracking
into our suturing procedure, so it requires human input only
on the first step of the suture; not after each segment.

C. End-effector trajectory generation

After obtaining the 3D keypoint correspondences, x1 ↔
x′1,x2 ↔ x′2, . . . ,xK ↔ x′K we directly apply the method
described in III-A to fit a 3D non-rigid transformation and
use it to warp the trajectory of the end-effectors. Note that
some trajectory segments move only one arm, while others
move both arms simultaneously (and thus have two end-
effectors).

The end-effector is either the robot’s gripper or the needle
tip. In the annotation stage, we indicate what the end-effector
is for each segment. One important point is that whenever the
end-effector is the needle tip, we need to know the precise
pose of the needle relative to the robot’s gripper. So every
time the robot grabs the needle, we follow that segment
with a “look-at-needle” motion where the robot holds up
the needle and acquires the location of the tip.

V. SUTURING EXPERIMENTS ON PR2

Our first set of experiments simulates surgical suturing
with a PR2 robot. The suture needle is a bent, rectangular
shaft with 5mm edge length, and it sutures through a foam
pad with pre-cut holes. For vision, we use an Asus Xtion
Pro mounted to the robot’s head.

The steps for tying one suture stitch are as follows:
• Pick up the needle
• Pick up one piece of tissue
• Pierce both pieces of tissue with the needle
• Re-grasp the needle with the opposite hand
• Pull the needle and thread through both pieces of tissue
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Fig. 2. Schematic diagram of the procedure applied at testing time for a given trajectory segment. “Demo” is short for “demonstration”. “Poses” and
“joints” refer to pose trajectories and joint trajectories, respectively.

IV. TECHNICAL DETAILS OF ALGORITHM

The training time and testing time procedures performed in
our real-world experiments are described below. A schematic
of the procedure applied at testing time is shown in Figure
2. The overall procedure used in the simulation experiments
was similar, except that we used the dense non-rigid regis-
tration method described in [11], using a set of points on
the rope and tissue that were directly obtained from the
simulation state.

A. Training and annotation procedure

At training time, we record a single high-quality demon-
stration of the complete task. This recording includes the
joint states of the robot and a RGBD video of the task
execution, recorded from a fixed camera.1

After data collection, we manually annotate the trajectory.
We first break it into segments. The segment boundaries are
chosen qualitatively, where the main consideration is that the
subsequent movement can be executed in open loop based
on the 3D data obtained at the beginning of the trajectory.
Some examples of segments are as follows:

• Pick up the suture needle
• Grab the suture thread and pull it to tighten
• Wrap the suture thread around the wrist.
For each segment, we manually select a set of 3D key-

points in the demonstration scene. These keypoints indicate
the parts of the scene that are most relevant to the next
segment of the manipulation task. In our tasks, we use
between zero and five keypoints. For some of the keypoints,
we added in extra keypoints to constrain the first derivative
of f in addition to its value.

For some keypoints, we can measure the surface normal
at the source and target location. Let’s denote the source and
target points and their normals by (p,n) and (p0,n0). Then
we add in the following extra keypoint pair:

p + ✏n $ p0 + ✏n0 (7)

for some epsilon on the order of 1 cm. To incorporate
the needle tip into the registration (e.g., for the stage
where we grab the needle) we can use its entire pose.
Let’s denote positions and orientations by (p,

�
x̂ ŷ ẑ

�
),

(p0,
�
x̂0 ŷ0 ẑ0

�
). Then we add three extra keypoint pairs

p + ✏x̂ $ p0 + ✏x̂0 (8)
p + ✏ŷ $ p0 + ✏ŷ0 (9)
p + ✏ẑ $ p0 + ✏ẑ0 (10)

We add in three extra keypoints
For example, K = 0 during knot tying for wrapping

the thread around the robot arm, since no targets in the
environment are relevant for the motion (except for collision
avoidance, which is accounted for separately). K = 1 for
grabbing the needle–the only keypoint is the tip of the needle.

1In our PR2 experiments, the camera was a Xtion-Pro mounted to the
robot’s head. We anticipate that the methods we describe will straightfor-
wardly generalize to a setting where 3D information is obtained through
stereo.

B. Keypoint detection at testing time

At testing time, the robot executes the same sequence of
trajectory segments that were demonstrated at training time.
Consider, for example, the retraction maneuver, where the
robot grabs a flap of tissue and lifts it up. At training time,
we labeled five keypoints x1,x2,x3,x4,x5—three on the
cut and one at each piercing location. To fit a transformation
between the demonstration and current scene as described
in Section III-A, we need to find five corresponding points
x0

1,x
0
2,x

0
3,x

0
4,x

0
5, in the test scene.

In our PR2 experiments, we had a human in the loop,
clicking on all of the relevant keypoints for a given segment.
We anticipate that in an actual surgical assistance system,
some human guidance would be desirable: the surgeon would
label where to suture, and a vision algorithm would track
these keypoints over time. We plan to incorporate tracking
into our suturing procedure, so it requires human input only
on the first step of the suture; not after each segment.

C. End-effector trajectory generation

After obtaining the 3D keypoint correspondences, x1 $
x0

1,x2 $ x0
2, . . . ,xK $ x0

K we directly apply the method
described in III-A to fit a 3D non-rigid transformation and
use it to warp the trajectory of the end-effectors. Note that
some trajectory segments move only one arm, while others
move both arms simultaneously (and thus have two end-
effectors).

The end-effector is either the robot’s gripper or the needle
tip. In the annotation stage, we indicate what the end-effector
is for each segment. One important point is that whenever the
end-effector is the needle tip, we need to know the precise
pose of the needle relative to the robot’s gripper. So every
time the robot grabs the needle, we follow that segment
with a “look-at-needle” motion where the robot holds up
the needle and acquires the location of the tip.

V. SUTURING EXPERIMENTS ON PR2

Our first set of experiments simulates surgical suturing—
in reality but scaled up—with a PR2 robot. Videos for this
experiment are available at the URL in the introduction. The
suture needle is a bent, rectangular shaft with 5mm edge
length, and it sutures through a foam pad with pre-cut holes.
For vision, we use an Asus Xtion Pro mounted to the robot’s
head.

The steps for tying one suture stitch are as follows:
• Pick up the needle
• Pick up one piece of tissue
• Pierce both pieces of tissue with the needle
• Re-grasp the needle with the opposite hand
• Pull the needle and thread through both pieces of tissue

Figure 3 shows several snapshots of this procedure. We did
not include the knot tie in the quantitative experiment.

As a baseline, we first executed demonstrated trajectories
in open loop, with no visual feedback. If we set up the
scene exactly like the training situation (to sub-centimeter
accuracy), it could successfully execute the demonstrated
trajectory in open loop a majority of the time. However, as

IV. TECHNICAL DETAILS OF ALGORITHM

The training time and testing time procedures performed in
our real-world experiments are described below. A schematic
of the procedure applied at testing time is shown in Figure
??. The overall procedure used in the simulation experiments
was similar, except that we used the dense non-rigid registra-
tion method described in [?], using a set of points on the rope
and tissue that were directly obtained from the simulation
state.

A. Training and annotation procedure
At training time, we record a single high-quality demon-

stration of the complete task. This recording includes the
joint states of the robot and a RGBD video of the task
execution, recorded from a fixed camera.1

After data collection, we manually annotate the trajectory.
We first break it into segments. The segment boundaries are
chosen qualitatively, where the main consideration is that the
subsequent movement can be executed in open loop based
on the 3D data obtained at the beginning of the trajectory.
Some examples of segments are as follows:

• Pick up the suture needle
• Grab the suture thread and pull it to tighten
• Wrap the suture thread around the wrist.
For each segment, we manually select a set of 3D key-

points in the demonstration scene. These keypoints indicate
the parts of the scene that are most relevant to the next
segment of the manipulation task. In our tasks, we use
between zero and five keypoints. For some of the keypoints,
we added in extra keypoints to constrain the first derivative
of f in addition to its value.

For some keypoints, we can measure the surface normal
at the source and target location. Let’s denote the source and
target points and their normals by (p, n̂) and (p0, n̂0). Then
we add in the following extra keypoint pair:

p + ✏n̂ $ p0 + ✏n̂0 (7)

for some epsilon on the order of 1 cm. For other keypoints
we can measure an entire frame (position and orientation). In
these experiments, we used the entire frame of the needle in
the registration when grabbing it. Let’s denote positions and
orientations by (p,

�
x̂ ŷ ẑ

�
), (p0,

�
x̂0 ŷ0 ẑ0

�
). Then

we add three extra keypoint pairs

p + ✏x̂ $ p0 + ✏x̂0 (8)
p + ✏ŷ $ p0 + ✏ŷ0 (9)
p + ✏ẑ $ p0 + ✏ẑ0 (10)

These extra keypoints are illustrated in Figure ??.
For example, K = 0 during knot tying for wrapping

the thread around the robot arm, since no targets in the
environment are relevant for the motion (except for collision
avoidance, which is accounted for separately). K = 1 for
grabbing the needle–the only keypoint is the tip of the needle.

1In our PR2 experiments, the camera was a Xtion-Pro mounted to the
robot’s head. We anticipate that the methods we describe will straightfor-
wardly generalize to a setting where 3D information is obtained through
stereo.

B. Keypoint detection at testing time

At testing time, the robot executes the same sequence of
trajectory segments that were demonstrated at training time.
Consider, for example, the retraction maneuver, where the
robot grabs a flap of tissue and lifts it up. At training time,
we labeled five keypoints x1,x2,x3,x4,x5—three on the
cut and one at each piercing location. To fit a transformation
between the demonstration and current scene as described
in Section ??, we need to find five corresponding points
x0

1,x
0
2,x

0
3,x

0
4,x

0
5, in the test scene.

In our PR2 experiments, we had a human in the loop,
clicking on all of the relevant keypoints for a given segment.
We anticipate that in an actual surgical assistance system,
some human guidance would be desirable: the surgeon would
label where to suture, and a vision algorithm would track
these keypoints over time. We plan to incorporate tracking
into our suturing procedure, so it requires human input only
on the first step of the suture; not after each segment.

C. End-effector trajectory generation

After obtaining the 3D keypoint correspondences, x1 $
x0

1,x2 $ x0
2, . . . ,xK $ x0

K we directly apply the method
described in ?? to fit a 3D non-rigid transformation and use
it to warp the trajectory of the end-effectors. Note that some
trajectory segments move only one arm, while others move
both arms simultaneously (and thus have two end-effectors).

The end-effector is either the robot’s gripper or the needle
tip. In the annotation stage, we indicate what the end-effector
is for each segment. One important point is that whenever the
end-effector is the needle tip, we need to know the precise
pose of the needle relative to the robot’s gripper. So every
time the robot grabs the needle, we follow that segment
with a “look-at-needle” motion where the robot holds up
the needle and acquires the location of the tip.

V. SUTURING EXPERIMENTS ON PR2

Our first set of experiments simulates surgical suturing—
in reality but scaled up—with a PR2 robot. Videos for this
experiment are available at the URL in the introduction. The
suture needle is a bent, rectangular shaft with 5mm edge
length, and it sutures through a foam pad with pre-cut holes.
For vision, we use an Asus Xtion Pro mounted to the robot’s
head.

The steps for tying one suture stitch are as follows:
• Pick up the needle
• Pick up one piece of tissue
• Pierce both pieces of tissue with the needle
• Re-grasp the needle with the opposite hand
• Pull the needle and thread through both pieces of tissue

Figure ?? shows several snapshots of this procedure. We did
not include the knot tie in the quantitative experiment.

As a baseline, we first executed demonstrated trajectories
in open loop, with no visual feedback. If we set up the
scene exactly like the training situation (to sub-centimeter
accuracy), it could successfully execute the demonstrated
trajectory in open loop a majority of the time. However, as
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our real-world experiments are described below. A schematic
of the procedure applied at testing time is shown in Figure
2. The overall procedure used in the simulation experiments
was similar, except that we used the dense non-rigid regis-
tration method described in [11], using a set of points on
the rope and tissue that were directly obtained from the
simulation state.

A. Training and annotation procedure

At training time, we record a single high-quality demon-
stration of the complete task. This recording includes the
joint states of the robot and a RGBD video of the task
execution, recorded from a fixed camera.1

After data collection, we manually annotate the trajectory.
We first break it into segments. The segment boundaries are
chosen qualitatively, where the main consideration is that the
subsequent movement can be executed in open loop based
on the 3D data obtained at the beginning of the trajectory.
Some examples of segments are as follows:

• Pick up the suture needle
• Grab the suture thread and pull it to tighten
• Wrap the suture thread around the wrist.
For each segment, we manually select a set of 3D key-

points in the demonstration scene. These keypoints indicate
the parts of the scene that are most relevant to the next
segment of the manipulation task. In our tasks, we use
between zero and five keypoints. For some of the keypoints,
we added in extra keypoints to constrain the first derivative
of f in addition to its value.

For some keypoints, we can measure the surface normal
at the source and target location. Let’s denote the source and
target points and their normals by (p,n) and (p0,n0). Then
we add in the following extra keypoint pair:

p + ✏n $ p0 + ✏n0 (7)

for some epsilon on the order of 1 cm. To incorporate
the needle tip into the registration (e.g., for the stage
where we grab the needle) we can use its entire pose.
Let’s denote positions and orientations by (p,

�
x̂ ŷ ẑ

�
),

(p0,
�
x̂0 ŷ0 ẑ0

�
). Then we add three extra keypoint pairs

p + ✏x̂ $ p0 + ✏x̂0 (8)
p + ✏ŷ $ p0 + ✏ŷ0 (9)
p + ✏ẑ $ p0 + ✏ẑ0 (10)

We add in three extra keypoints
For example, K = 0 during knot tying for wrapping

the thread around the robot arm, since no targets in the
environment are relevant for the motion (except for collision
avoidance, which is accounted for separately). K = 1 for
grabbing the needle–the only keypoint is the tip of the needle.

1In our PR2 experiments, the camera was a Xtion-Pro mounted to the
robot’s head. We anticipate that the methods we describe will straightfor-
wardly generalize to a setting where 3D information is obtained through
stereo.

B. Keypoint detection at testing time

At testing time, the robot executes the same sequence of
trajectory segments that were demonstrated at training time.
Consider, for example, the retraction maneuver, where the
robot grabs a flap of tissue and lifts it up. At training time,
we labeled five keypoints x1,x2,x3,x4,x5—three on the
cut and one at each piercing location. To fit a transformation
between the demonstration and current scene as described
in Section III-A, we need to find five corresponding points
x0

1,x
0
2,x

0
3,x

0
4,x

0
5, in the test scene.

In our PR2 experiments, we had a human in the loop,
clicking on all of the relevant keypoints for a given segment.
We anticipate that in an actual surgical assistance system,
some human guidance would be desirable: the surgeon would
label where to suture, and a vision algorithm would track
these keypoints over time. We plan to incorporate tracking
into our suturing procedure, so it requires human input only
on the first step of the suture; not after each segment.

C. End-effector trajectory generation

After obtaining the 3D keypoint correspondences, x1 $
x0

1,x2 $ x0
2, . . . ,xK $ x0

K we directly apply the method
described in III-A to fit a 3D non-rigid transformation and
use it to warp the trajectory of the end-effectors. Note that
some trajectory segments move only one arm, while others
move both arms simultaneously (and thus have two end-
effectors).

The end-effector is either the robot’s gripper or the needle
tip. In the annotation stage, we indicate what the end-effector
is for each segment. One important point is that whenever the
end-effector is the needle tip, we need to know the precise
pose of the needle relative to the robot’s gripper. So every
time the robot grabs the needle, we follow that segment
with a “look-at-needle” motion where the robot holds up
the needle and acquires the location of the tip.

V. SUTURING EXPERIMENTS ON PR2

Our first set of experiments simulates surgical suturing—
in reality but scaled up—with a PR2 robot. Videos for this
experiment are available at the URL in the introduction. The
suture needle is a bent, rectangular shaft with 5mm edge
length, and it sutures through a foam pad with pre-cut holes.
For vision, we use an Asus Xtion Pro mounted to the robot’s
head.

The steps for tying one suture stitch are as follows:
• Pick up the needle
• Pick up one piece of tissue
• Pierce both pieces of tissue with the needle
• Re-grasp the needle with the opposite hand
• Pull the needle and thread through both pieces of tissue

Figure 3 shows several snapshots of this procedure. We did
not include the knot tie in the quantitative experiment.

As a baseline, we first executed demonstrated trajectories
in open loop, with no visual feedback. If we set up the
scene exactly like the training situation (to sub-centimeter
accuracy), it could successfully execute the demonstrated
trajectory in open loop a majority of the time. However, as

IV. TECHNICAL DETAILS OF ALGORITHM

The training time and testing time procedures performed in
our real-world experiments are described below. A schematic
of the procedure applied at testing time is shown in Figure
??. The overall procedure used in the simulation experiments
was similar, except that we used the dense non-rigid registra-
tion method described in [?], using a set of points on the rope
and tissue that were directly obtained from the simulation
state.

A. Training and annotation procedure
At training time, we record a single high-quality demon-

stration of the complete task. This recording includes the
joint states of the robot and a RGBD video of the task
execution, recorded from a fixed camera.1

After data collection, we manually annotate the trajectory.
We first break it into segments. The segment boundaries are
chosen qualitatively, where the main consideration is that the
subsequent movement can be executed in open loop based
on the 3D data obtained at the beginning of the trajectory.
Some examples of segments are as follows:

• Pick up the suture needle
• Grab the suture thread and pull it to tighten
• Wrap the suture thread around the wrist.
For each segment, we manually select a set of 3D key-

points in the demonstration scene. These keypoints indicate
the parts of the scene that are most relevant to the next
segment of the manipulation task. In our tasks, we use
between zero and five keypoints. For some of the keypoints,
we added in extra keypoints to constrain the first derivative
of f in addition to its value.

For some keypoints, we can measure the surface normal
at the source and target location. Let’s denote the source and
target points and their normals by (p, n̂) and (p0, n̂0). Then
we add in the following extra keypoint pair:

p + ✏n̂ $ p0 + ✏n̂0 (7)

for some epsilon on the order of 1 cm. For other keypoints
we can measure an entire frame (position and orientation). In
these experiments, we used the entire frame of the needle in
the registration when grabbing it. Let’s denote positions and
orientations by (p,
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�
), (p0,
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x̂0 ŷ0 ẑ0

�
). Then

we add three extra keypoint pairs

p + ✏x̂ $ p0 + ✏x̂0 (8)
p + ✏ŷ $ p0 + ✏ŷ0 (9)
p + ✏ẑ $ p0 + ✏ẑ0 (10)

These extra keypoints are illustrated in Figure ??.
For example, K = 0 during knot tying for wrapping

the thread around the robot arm, since no targets in the
environment are relevant for the motion (except for collision
avoidance, which is accounted for separately). K = 1 for
grabbing the needle–the only keypoint is the tip of the needle.

1In our PR2 experiments, the camera was a Xtion-Pro mounted to the
robot’s head. We anticipate that the methods we describe will straightfor-
wardly generalize to a setting where 3D information is obtained through
stereo.

B. Keypoint detection at testing time

At testing time, the robot executes the same sequence of
trajectory segments that were demonstrated at training time.
Consider, for example, the retraction maneuver, where the
robot grabs a flap of tissue and lifts it up. At training time,
we labeled five keypoints x1,x2,x3,x4,x5—three on the
cut and one at each piercing location. To fit a transformation
between the demonstration and current scene as described
in Section ??, we need to find five corresponding points
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5, in the test scene.

In our PR2 experiments, we had a human in the loop,
clicking on all of the relevant keypoints for a given segment.
We anticipate that in an actual surgical assistance system,
some human guidance would be desirable: the surgeon would
label where to suture, and a vision algorithm would track
these keypoints over time. We plan to incorporate tracking
into our suturing procedure, so it requires human input only
on the first step of the suture; not after each segment.

C. End-effector trajectory generation

After obtaining the 3D keypoint correspondences, x1 $
x0

1,x2 $ x0
2, . . . ,xK $ x0

K we directly apply the method
described in ?? to fit a 3D non-rigid transformation and use
it to warp the trajectory of the end-effectors. Note that some
trajectory segments move only one arm, while others move
both arms simultaneously (and thus have two end-effectors).

The end-effector is either the robot’s gripper or the needle
tip. In the annotation stage, we indicate what the end-effector
is for each segment. One important point is that whenever the
end-effector is the needle tip, we need to know the precise
pose of the needle relative to the robot’s gripper. So every
time the robot grabs the needle, we follow that segment
with a “look-at-needle” motion where the robot holds up
the needle and acquires the location of the tip.

V. SUTURING EXPERIMENTS ON PR2

Our first set of experiments simulates surgical suturing—
in reality but scaled up—with a PR2 robot. Videos for this
experiment are available at the URL in the introduction. The
suture needle is a bent, rectangular shaft with 5mm edge
length, and it sutures through a foam pad with pre-cut holes.
For vision, we use an Asus Xtion Pro mounted to the robot’s
head.

The steps for tying one suture stitch are as follows:
• Pick up the needle
• Pick up one piece of tissue
• Pierce both pieces of tissue with the needle
• Re-grasp the needle with the opposite hand
• Pull the needle and thread through both pieces of tissue

Figure ?? shows several snapshots of this procedure. We did
not include the knot tie in the quantitative experiment.

As a baseline, we first executed demonstrated trajectories
in open loop, with no visual feedback. If we set up the
scene exactly like the training situation (to sub-centimeter
accuracy), it could successfully execute the demonstrated
trajectory in open loop a majority of the time. However, as
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The training time and testing time procedures performed in
our real-world experiments are described below. A schematic
of the procedure applied at testing time is shown in Figure
??. The overall procedure used in the simulation experiments
was similar, except that we used the dense non-rigid registra-
tion method described in [?], using a set of points on the rope
and tissue that were directly obtained from the simulation
state.

A. Training and annotation procedure
At training time, we record a single high-quality demon-

stration of the complete task. This recording includes the
joint states of the robot and a RGBD video of the task
execution, recorded from a fixed camera.1

After data collection, we manually annotate the trajectory.
We first break it into segments. The segment boundaries are
chosen qualitatively, where the main consideration is that the
subsequent movement can be executed in open loop based
on the 3D data obtained at the beginning of the trajectory.
Some examples of segments are as follows:

• Pick up the suture needle
• Grab the suture thread and pull it to tighten
• Wrap the suture thread around the wrist.
For each segment, we manually select a set of 3D key-

points in the demonstration scene. These keypoints indicate
the parts of the scene that are most relevant to the next
segment of the manipulation task. In our tasks, we use
between zero and five keypoints. For some of the keypoints,
we added in extra keypoints to constrain the first derivative
of f in addition to its value.

For some keypoints, we can measure the surface normal
at the source and target location. Let’s denote the source and
target points and their normals by (p, n̂) and (p0, n̂0). Then
we add in the following extra keypoint pair:

p + ✏n̂ $ p0 + ✏n̂0 (7)

for some epsilon on the order of 1 cm. For other keypoints
we can measure an entire frame (position and orientation). In
these experiments, we used the entire frame of the needle in
the registration when grabbing it. Let’s denote positions and
orientations by (p,
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�
), (p0,

�
x̂0 ŷ0 ẑ0
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). Then

we add three extra keypoint pairs

p + ✏x̂ $ p0 + ✏x̂0 (8)
p + ✏ŷ $ p0 + ✏ŷ0 (9)
p + ✏ẑ $ p0 + ✏ẑ0 (10)

These extra keypoints are illustrated in Figure ??.
For example, K = 0 during knot tying for wrapping

the thread around the robot arm, since no targets in the
environment are relevant for the motion (except for collision
avoidance, which is accounted for separately). K = 1 for
grabbing the needle–the only keypoint is the tip of the needle.

1In our PR2 experiments, the camera was a Xtion-Pro mounted to the
robot’s head. We anticipate that the methods we describe will straightfor-
wardly generalize to a setting where 3D information is obtained through
stereo.

B. Keypoint detection at testing time

At testing time, the robot executes the same sequence of
trajectory segments that were demonstrated at training time.
Consider, for example, the retraction maneuver, where the
robot grabs a flap of tissue and lifts it up. At training time,
we labeled five keypoints x1,x2,x3,x4,x5—three on the
cut and one at each piercing location. To fit a transformation
between the demonstration and current scene as described
in Section ??, we need to find five corresponding points
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In our PR2 experiments, we had a human in the loop,
clicking on all of the relevant keypoints for a given segment.
We anticipate that in an actual surgical assistance system,
some human guidance would be desirable: the surgeon would
label where to suture, and a vision algorithm would track
these keypoints over time. We plan to incorporate tracking
into our suturing procedure, so it requires human input only
on the first step of the suture; not after each segment.

C. End-effector trajectory generation

After obtaining the 3D keypoint correspondences, x1 $
x0

1,x2 $ x0
2, . . . ,xK $ x0

K we directly apply the method
described in ?? to fit a 3D non-rigid transformation and use
it to warp the trajectory of the end-effectors. Note that some
trajectory segments move only one arm, while others move
both arms simultaneously (and thus have two end-effectors).

The end-effector is either the robot’s gripper or the needle
tip. In the annotation stage, we indicate what the end-effector
is for each segment. One important point is that whenever the
end-effector is the needle tip, we need to know the precise
pose of the needle relative to the robot’s gripper. So every
time the robot grabs the needle, we follow that segment
with a “look-at-needle” motion where the robot holds up
the needle and acquires the location of the tip.

V. SUTURING EXPERIMENTS ON PR2

Our first set of experiments simulates surgical suturing—
in reality but scaled up—with a PR2 robot. Videos for this
experiment are available at the URL in the introduction. The
suture needle is a bent, rectangular shaft with 5mm edge
length, and it sutures through a foam pad with pre-cut holes.
For vision, we use an Asus Xtion Pro mounted to the robot’s
head.

The steps for tying one suture stitch are as follows:
• Pick up the needle
• Pick up one piece of tissue
• Pierce both pieces of tissue with the needle
• Re-grasp the needle with the opposite hand
• Pull the needle and thread through both pieces of tissue

Figure ?? shows several snapshots of this procedure. We did
not include the knot tie in the quantitative experiment.

As a baseline, we first executed demonstrated trajectories
in open loop, with no visual feedback. If we set up the
scene exactly like the training situation (to sub-centimeter
accuracy), it could successfully execute the demonstrated
trajectory in open loop a majority of the time. However, as
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The training time and testing time procedures performed in
our real-world experiments are described below. A schematic
of the procedure applied at testing time is shown in Figure
??. The overall procedure used in the simulation experiments
was similar, except that we used the dense non-rigid registra-
tion method described in [?], using a set of points on the rope
and tissue that were directly obtained from the simulation
state.

A. Training and annotation procedure
At training time, we record a single high-quality demon-

stration of the complete task. This recording includes the
joint states of the robot and a RGBD video of the task
execution, recorded from a fixed camera.1

After data collection, we manually annotate the trajectory.
We first break it into segments. The segment boundaries are
chosen qualitatively, where the main consideration is that the
subsequent movement can be executed in open loop based
on the 3D data obtained at the beginning of the trajectory.
Some examples of segments are as follows:

• Pick up the suture needle
• Grab the suture thread and pull it to tighten
• Wrap the suture thread around the wrist.
For each segment, we manually select a set of 3D key-

points in the demonstration scene. These keypoints indicate
the parts of the scene that are most relevant to the next
segment of the manipulation task. In our tasks, we use
between zero and five keypoints. For some of the keypoints,
we added in extra keypoints to constrain the first derivative
of f in addition to its value.

For some keypoints, we can measure the surface normal
at the source and target location. Let’s denote the source and
target points and their normals by (p, n̂) and (p0, n̂0). Then
we add in the following extra keypoint pair:

p + ✏n̂ $ p0 + ✏n̂0 (7)

for some epsilon on the order of 1 cm. For other keypoints
we can measure an entire frame (position and orientation). In
these experiments, we used the entire frame of the needle in
the registration when grabbing it. Let’s denote positions and
orientations by (p,
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�
). Then

we add three extra keypoint pairs

p + ✏x̂ $ p0 + ✏x̂0 (8)
p + ✏ŷ $ p0 + ✏ŷ0 (9)
p + ✏ẑ $ p0 + ✏ẑ0 (10)

These extra keypoints are illustrated in Figure ??.
For example, K = 0 during knot tying for wrapping

the thread around the robot arm, since no targets in the
environment are relevant for the motion (except for collision
avoidance, which is accounted for separately). K = 1 for
grabbing the needle–the only keypoint is the tip of the needle.

1In our PR2 experiments, the camera was a Xtion-Pro mounted to the
robot’s head. We anticipate that the methods we describe will straightfor-
wardly generalize to a setting where 3D information is obtained through
stereo.

B. Keypoint detection at testing time

At testing time, the robot executes the same sequence of
trajectory segments that were demonstrated at training time.
Consider, for example, the retraction maneuver, where the
robot grabs a flap of tissue and lifts it up. At training time,
we labeled five keypoints x1,x2,x3,x4,x5—three on the
cut and one at each piercing location. To fit a transformation
between the demonstration and current scene as described
in Section ??, we need to find five corresponding points
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5, in the test scene.

In our PR2 experiments, we had a human in the loop,
clicking on all of the relevant keypoints for a given segment.
We anticipate that in an actual surgical assistance system,
some human guidance would be desirable: the surgeon would
label where to suture, and a vision algorithm would track
these keypoints over time. We plan to incorporate tracking
into our suturing procedure, so it requires human input only
on the first step of the suture; not after each segment.

C. End-effector trajectory generation

After obtaining the 3D keypoint correspondences, x1 $
x0

1,x2 $ x0
2, . . . ,xK $ x0

K we directly apply the method
described in ?? to fit a 3D non-rigid transformation and use
it to warp the trajectory of the end-effectors. Note that some
trajectory segments move only one arm, while others move
both arms simultaneously (and thus have two end-effectors).

The end-effector is either the robot’s gripper or the needle
tip. In the annotation stage, we indicate what the end-effector
is for each segment. One important point is that whenever the
end-effector is the needle tip, we need to know the precise
pose of the needle relative to the robot’s gripper. So every
time the robot grabs the needle, we follow that segment
with a “look-at-needle” motion where the robot holds up
the needle and acquires the location of the tip.

V. SUTURING EXPERIMENTS ON PR2

Our first set of experiments simulates surgical suturing—
in reality but scaled up—with a PR2 robot. Videos for this
experiment are available at the URL in the introduction. The
suture needle is a bent, rectangular shaft with 5mm edge
length, and it sutures through a foam pad with pre-cut holes.
For vision, we use an Asus Xtion Pro mounted to the robot’s
head.

The steps for tying one suture stitch are as follows:
• Pick up the needle
• Pick up one piece of tissue
• Pierce both pieces of tissue with the needle
• Re-grasp the needle with the opposite hand
• Pull the needle and thread through both pieces of tissue

Figure ?? shows several snapshots of this procedure. We did
not include the knot tie in the quantitative experiment.

As a baseline, we first executed demonstrated trajectories
in open loop, with no visual feedback. If we set up the
scene exactly like the training situation (to sub-centimeter
accuracy), it could successfully execute the demonstrated
trajectory in open loop a majority of the time. However, as
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Fig. 3. Extra keypoints added when normal and pose information at the
keypoints is relevant. Left: extra keypoint added for a surface normal. Right:
three extra keypoints added for full rotation (at needle tip, needle shown in
gray).

• Tie a surgeon’s instrument-tied knot
Figure 4 shows several snapshots of this procedure. We did
not include the knot tie in the quantitative experiment.

To investigate the extent to which the learned trajectory
generalizes to different task space geometries, we applied
translations, rotations, and bends to the suturing environment
and measured the success rate. For these experiments, we
focused on the first step of the manipulation: grasping
the suture needle and passing it through the holes in the
simulated tissue. This part requires precise movements based
on perception, and always failed when executed in open loop
unless the initial conditions exactly matched the demonstra-
tion.

Our procedure handled small translations easily with ap-
proximately 100% success, so we did not collect data on
translations. For rotations, we found that the robot succeeded
100% of the time for small rotations (less than 10 degrees).
However, as the rotation of the environment was increased,
several sources of error in the overall pipeline became
apparent. TODO: description of failures, results for non-rigid
The results are shown in Table I.

TODO: update this. In summary, our experiments showed
a good success rate even when the experimental setup was
rotated or bent, and failures could be attributed to limitations
of our current implementation that are readily fixable.

VI. SUTURING EXPERIMENTS WITH RAVEN ROBOT IN
PHYSICS SIMULATION

We performed a separate set of experiments in a physics
simulation environment, using a Raven II surgical robot [6].

These experiments in simulation provided a useful supple-
ment to the PR2 experiments in several ways:
• The experiments are repeatable and it’s possible to run

a much larger number of them.
• The Raven has different kinematics than the PR2: non-

redundant arm kinematics, remote center of motion.
We performed suture stitch (with puncture and knot), and we
assumed that the robot has a mechanism to pass the needle
between its gripper tips such as in the Endo StitchTM system.

We used OpenRAVE [4] to load the model of the robot and
do kinematics calculations, and we used a custom simulation
environment based on Bullet physics engine. We teleoperated
the simulated Ravens using a pair of Phantom OMNIsTM.

The experimental results for using trajectory transfer on
a single human demonstration are shown in Table II. They
show that the task succeeds reliably for small perturbations
but fails as the size of the perturbation is increased. TODO:
comment on failure cases

It’s worth noting that this task was very challenging for
humans to perform under teleoperation with the Phantom
OMNIs, and it took several hours of practice before we were
able to record a successful demonstration.

VII. LEVERAGING MULTIPLE DEMONSTRATIONS WITH
BOOTSTRAPPING PROCEDURE

The above experiments showed that trajectory transfer
enables task success for a variety of initial conditions around
the demonstration’s initial conditions. The success rate de-
creased for more distant initial conditions. These results
suggest that by providing a large number of demonstrations
that cover the space of initial conditions, we will achieve a
much higher success rate, by simply looking up the nearest
demonstration at each step of the execution. See [13] for
more details on this nearest-neighbor lookup procedure.

Instead of covering the space of initial conditions with
human demonstrations, we used the set of successful au-
tonomous executions as demonstrations–we call this pro-
cedure “bootstrapping”. After the first set of experiments,
with results shown in Table II, we used the set of successful
executions as an additional set of demonstrations.

As in [13], we measured closeness by performing non-
rigid registration between the current state and the initial
state of the corresponding segment in the demonstration, and
considering the registration cost from Equation (1). To save
on computation time, we only considered five demonstrations
with nearby perturbation parameters.



Perturbation Complete Success Failed Needle Grasp Failed Tissue Grasp Failed Pierce
10◦ x rotation 3/3 0 0 0
15◦ x rotation 0/3 1 0 2
20◦ x rotation 2/3 1 0 0
10◦ y rotation 3/3 0 0 0
15◦ y rotation 1/3 2 0 0
20◦ y rotation 0/3 1 2 0
10◦ z rotation 3/3 0 0 0
15◦ z rotation 1/3 2 0 0
20◦ z rotation 0/3 2 0 1

TABLE I
Experimental results for PR2 performing pierce and regrasp. Three trials were performed in each experimental setting, so each row adds up to three. The

last three columns are the different types of failures that occurred.

todo

TABLE II
Experimental results for the Raven suturing in simulation. The procedure included piercing, thread reorientation and knot tying. Piercing always

succeeded.

We re-ran all of the experiments using this expanded set
of demonstrations. The results are shown in Table III, and
they show that the bootstrapping procedure was empirically
very successful.

VIII. FUTURE WORK

In future work, we plan to implement the procedure we
described on a real surgical robot. We anticipate that this
setting will present significant new challenges: perception on
a smaller scale; working with lower precision of the robot
relative to the scale of the experiment; and coping with the
material properties of suture thread and tissue, which are
more challenging to deal with than foam and rope.

The method we developed has demonstrated the significant
promise of our approach, but we see many avenues for
improvement. Currently the algorithm tries to stay near a
reference trajectory but does not know in what ways the
trajectory can be safely varied. Usually some parts need to be
very precise (e.g. a grasp) while other parts (a motion through
free space) can tolerate a large error. This information
would be inconvenient to manually specify. One promising
approach to automatically learn what is important is inverse
reinforcement learning: collect a set of demonstrations and

find the objective that reproduces the observed behavior
[1], [10]. A closely related approach is to fit a Gaussian
(or mixture of Gaussians) distribution to the collection of
demonstrations and identify the directions of low variance–
these are the important directions [3], [14], [2]. Alternatively,
one could use a more domain-specific scheme that looks at
the physical interactions between the robot and its environ-
ment. For example, the points where the robot contacts the
environment need to be reached precisely, but the robot has
more leeway when it is not in contact with anything.

IX. CONCLUSION

We have applied the trajectory transfer method to the
problem of autonomous suturing and our experimental results
with a real PR2 and simulated Raven robot validate this
approach. These results suggest that trajectory transfer could
be a powerful building block to bring us closer to having
robots learn to perform challenging manipulation tasks from
demonstrations. TODO: say something slightly more detailed
based on experiments

Fig. 4. Snapshots of PR2 tying a suture stitch in our experimental setup, which used a foam block with pre-cut holes.



Fig. 5. Snapshots of Raven II tying a suture stitch in simulation.

todo

TABLE III
Experimental success after botostrapping.
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