The Nuts and Bolts of Deep RL Research

John Schulman

OpenAI

December 9th, 2016
Outline

Approaching New Problems

Ongoing Development and Tuning

General Tuning Strategies for RL

Policy Gradient Strategies

Q-Learning Strategies

Miscellaneous Advice
Approaching New Problems
New Algorithm? Use Small Test Problems

- Run experiments quickly
- Do hyperparameter search
- Interpret and visualize learning process: state visitation, value function, etc.
- Counterpoint: don’t overfit algorithm to contrived problem
- Useful to have medium-sized problems that you’re intimately familiar with (Hopper, Atari Pong)
New Task? Make It Easier Until Signs of Life

- Provide good input features
- Shape reward function
POMDP Design

- Visualize random policy: does it sometimes exhibit desired behavior?
- Human control
 - Atari: can you see game features in downsampled image?
- Plot time series for observations and rewards. Are they on a reasonable scale?
 - hopper.py in gym:
 reward = 1.0 - 1e-3 * np.square(a).sum() + delta_x / delta_t
- Histogram observations and rewards
Run Your Baselines

- Don’t expect them to work with default parameters
- Recommended:
 - Cross-entropy method\(^1\)
 - Well-tuned policy gradient method\(^2\)
 - Well-tuned Q-learning + SARSA method

\(^2\) https://github.com/openai/rllab
Run with More Samples Than Expected

- Early in tuning process, may need huge number of samples
 - Don’t be deterred by published work
- Examples:
 - TRPO on Atari: 100K timesteps per batch for $KL = 0.01$
 - DQN on Atari: update freq=10K, replay buffer size=1M
Ongoing Development and Tuning
It Works! But Don’t Be Satisfied

- Explore sensitivity to each parameter
 - If too sensitive, it doesn’t really work, you just got lucky
- Look for health indicators
 - VF fit quality
 - Policy entropy
 - Update size in output space and parameter space
 - Standard diagnostics for deep networks
Continually Benchmark Your Code

- If reusing code, regressions occur
- Run a battery of benchmarks occasionally
Always Use Multiple Random Seeds
Always Be Ablating

- Different tricks may substitute
 - Especially whitening
- “Regularize” to favor simplicity in algorithm design space
 - As usual, simplicity \rightarrow generalization
Automate Your Experiments

- Don't spend all day watching your code print out numbers
- Consider using a cloud computing platform (Microsoft Azure, Amazon EC2, Google Compute Engine)
General Tuning Strategies for RL
Whitening / Standardizing Data

- If observations have unknown range, standardize
 - Compute running estimate of mean and standard deviation
 \[x' = \text{clip}\left(\frac{x - \mu}{\sigma}, -10, 10\right) \]
 - Rescale the rewards, but don’t shift mean, as that affects agent’s will to live
 - Standardize prediction targets (e.g., value functions) the same way
Generally Important Parameters

- **Discount**
 - Return$^t = r^t + \gamma r^{t+1} + \gamma^2 r^{t+2} + \ldots$
 - Effective time horizon: $1 + \gamma + \gamma^2 + \cdots = 1/(1 - \gamma)$
 - I.e., $\gamma = 0.99 \Rightarrow$ ignore rewards delayed by more than 100 timesteps
 - Low γ works well for well-shaped reward
 - In TD(λ) methods, can get away with high γ when $\lambda < 1$

- **Action frequency**
 - Solvable with human control (if possible)
 - View random exploration
General RL Diagnostics

- Look at min/max/stdev of episode returns, along with mean
- Look at episode lengths: sometimes provides additional information
 - Solving problem faster, losing game slower
Policy Gradient Strategies
Entropy as Diagnostic

- Premature drop in policy entropy \Rightarrow no learning
- Alleviate by using entropy bonus or KL penalty
KL as Diagnostic

- Compute KL \([\pi_{\text{old}}(\cdot | s), \pi(\cdot | s)] \)
- KL spike \(\Rightarrow \) drastic loss of performance
- No learning progress might mean steps are too large
 - batchsize=100K converges to different result than batchsize=20K.
Baseline Explained Variance

explained variance = \frac{1 - \text{Var}[\text{empirical return} - \text{predicted value}]}{\text{Var}[\text{empirical return}]}
Policy Initialization

- More important than in supervised learning: determines initial state visitation
- Zero or tiny final layer, to maximize entropy
Q-Learning Strategies

- Optimize memory usage carefully: you’ll need it for replay buffer
- Learning rate schedules
- Exploration schedules
- Be patient. DQN converges slowly
 - On Atari, often 10-40M frames to get policy much better than random

Thanks to Szymon Sidor for suggestions
Miscellaneous Advice

- Read older textbooks and theses, not just conference papers
- Don’t get stuck on problems—can’t solve everything at once
 - Exploration problems like cart-pole swing-up
 - DQN on Atari vs CartPole
Thanks!