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Abstract—We present a novel approach for incorporating
collision avoidance into trajectory optimization as a method of
solving robotic motion planning problems. At the core of our
approach are (i) A sequential convex optimization procedure,
which penalizes collisions with a hinge loss and increases the
penalty coefficients in an outer loop as necessary. (ii) An efficient
formulation of the no-collisions constraint that directly considers
continuous-time safety and enables the algorithm to reliably solve
motion planning problems, including problems involving thin and
complex obstacles.

We benchmarked our algorithm against several other mo-
tion planning algorithms, solving a suite of 7-degree-of-freedom
(DOF) arm-planning problems and 18-DOF full-body planning
problems. We compared against sampling-based planners from
OMPL, and we also compared to CHOMP, a leading approach
for trajectory optimization. Our algorithm was faster than the
alternatives, solved more problems, and yielded higher quality
paths.

Experimental evaluation on the following additional problem
types also confirmed the speed and effectiveness of our approach:
(i) Planning foot placements with 34 degrees of freedom (28 joints
+ 6 DOF pose) of the Atlas humanoid robot as it maintains
static stability and has to negotiate environmental constraints.
(ii) Industrial box picking. (iii) Real-world motion planning for
the PR2 that requires considering all degrees of freedom at the
same time.

I. INTRODUCTION

Trajectory optimization algorithms have two roles in robotic
motion planning. First, they can be used to smooth and shorten
trajectories generated by some other method. Second, they can
be used to plan from scratch: one initializes with a trajectory
that contains collisions and perhaps violates constraints, and
one hopes that the optimization converges to a high-quality
trajectory satisfying constraints. Using an optimization algo-
rithm to plan from scratch is an especially attractive option
in problems with many degrees of freedom (DOF), since the
computation time scales favorably with the number of DOF.

Two of the key ingredients in trajectory optimization for
motion planning are (1) the numerical optimization method,
and (2) the method of checking for collisions and penalizing
them. For numerical optimization, we use sequential convex
optimization, with `

1

penalties for equality and inequality
constraints. This approach involves solving a series of con-
vex optimization problems that approximate the cost and
constraints of the true problem, which is non-convex. For
collisions, we compute signed distances using convex-convex
collision detection, and we ensure the continuous-time safety
of a trajectory by considering the swept-out volume. These two
aspects of our approach are complementary, since our collision
checking method yields a polyhedral approximation of the free

Saturday, February 2, 13

Fig. 1. Several problem settings were we have used our algorithm for motion
planning. Top left: planning an arm trajectory for the PR2 in simulation, in a
benchmark problem. Top right: PR2 opening a door with a full-body motion.
Bottom left: industrial robot picking boxes, obeying an orientation constraint
on the end effector. Bottom right: humanoid robot model (DRC/Atlas) ducking
underneath an obstacle while obeying static stability constraints.

part of configuration space, which can be directly incorporated
into the convex optimization problem that is solved at each
iteration of the optimization.

The first advantage of our approach is speed. Our imple-
mentation solves typical arm planning problems in around
100 � 200 ms and solves problems involving many more
degrees of freedom in under a second. This is largely enabled
by our novel formulation of the the collision penalty, which
guarantees safety in continuous time by considering swept-
out volumes. This cost formulation has little computational
overhead in collision checking and allows us to use a sparsely
sampled trajectory. The second advantage of our approach
is its reliability—it solves a surprisingly large fraction of
planning problems. In our experiments, our algorithm solved
a larger fraction of problems than any of the sampling-based
planners, which were given a ten second time limit. The
third advantage of our approach regards path quality: once
the trajectory is free of collisions, our approach will treat
collision avoidance as a hard constraint (i.e., keep a certain
safe distance from obstacles.) Our algorithm will converge to
a locally optimal solution subject to this constraint, without
compromising the other objective criteria. The fourth advan-
tage of our approach is flexibility: new constraints and cost

Mobile manipulator (18 DOF)Industrial robot arm (6 DOF) Humanoid (34 DOF)
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To define closest points and our derivative approximation,
first note that the signed distance function is given by the
following formula, which applies to both the overlapping and
non-overlapping cases:

sd({A, Fw
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The closest points pA,pB and normal ˆ

n are defined as a triple
that achieve the optimum described in (14). Equivalently, the
contact normal ˆ

n is the direction of the minimal translation T
(as defined in Equations (8) and (9)), and p

A and p

B are a
pair of points (expressed in local coordinates) that are touching
when we translate A by T . See Figure 2 for illustration.

Let’s assume that the pose of A is parameterized by vector
✓ (e.g., the robot’s joint angles), and B is stationary. (This
calculation can be straightforwardly extended to the case
where both objects vary with ✓, which is necessary for dealing
with self-collisions.) Then we can linearize the signed distance
by assuming that the local positions p

A

,p
B

are fixed, and that
the normal n is also fixed, in Equation (14).

We first linearize the signed distance with respect to the
positions of the closest points:
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By calculating the Jacobian of p
A

with respect to the degrees
of freedom ✓, we can linearize this signed distance expression
at ✓
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The above expression allows us to form a local approximation
of one collision cost term with respect to the robot’s degrees of
freedom. This approximation is used for every pair of nearby
objects returned by the collision checker.

Note that this formula, which assumes that the normal
ˆ

n and the closest points are fixed, is correct to first order
in non-degenerate situations involving polyhedra. However,
in degenerate cases involving face-face contacts, the signed
distance is non-differentiable as a function of the poses of
the objects, and the above formula deviates from correctness.
Empirically, the optimization does not seem to get stuck at the
points of non-differentiability.

V. ENSURING CONTINUOUS-TIME SAFETY

The preceding section describes how to formulate a col-
lision constraint or penalty that ensures that a given robot
configuration ✓ is not in collision. We can use this constraint
or penalty to ensure that the robot is collision-free at each
waypoint of a discretely-sampled trajectory. These waypoints
will need to be converted to a continuous-time trajectory, e.g.
by linear interpolation or cubic splines. However, the resulting
continuous-time trajectory might have collisions between the
waypoints—see Figure 4.

We can modify the collision penalty from Section IV to
give a cost that enforces the continuous-time safety of the
trajectory (though it makes a geometric approximation). It
is only moderately more computationally expensive than the
discrete-time collision cost of the previous section.

T

B

A(t)

A(t+1)
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Fig. 4. Illustration of swept volume, which we use in our continuous collision
cost.

Consider a moving object A and a static object B, for
0  t  1. The motion is free of collision if the swept-
out volume [

t

A(t) does not intersect B. First suppose that
A undergoes only translation, not rotation. (We will consider
rotations below.) Then the swept-out volume is the convex hull
of the initial and final volumes [29]

[

t2[0,1]

A(t) = convhull(A(t),A(t + 1)) (17)

Thus we can use the same sort of collision cost we described
in Section IV, but now we calculate the signed distance
between the swept-out volume of A and the obstacle B:

sd(convhull(A(t),A(t + 1)),B) (18)

It turns out that we don’t have to calculate the convex
hull of shapes A(t), A(t + 1) to perform the necessary signed
distance computation, since (as noted in Section IV) the signed
distance cost can be calculated using the support mappings.
In particular, the support mapping is given by

s
convhull(C,D)

(v) =

(
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C
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C

(v) · v > s
D

(v) · v
s

D
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(19)

Calculating the gradient of the swept-volume collision cost
is slightly more involved than discrete case described in
Equations (15) and (16). Let’s consider the case where object
A is moving and object B is stationary, as in Figure 4. Let’s
suppose that A and B are polyhedral. Then the closest point
p

swept

2 convhull(A(t), A(t + 1)) lies in one of the faces
of this polytope. convhull(A(t), A(t + 1)) has three types of
faces: (1) all the vertices are from A(t), (2) all of the vertices
are from A(t + 1), and (3) otherwise. Cases (1) and (2) occur
when the deepest contact in the interval [t, t+1] occurs at one
of the endpoints, and the gradient is given by the discrete-time
formula. In case (3), we have to estimate how the closest point
varies as a function of the poses of A at times t and t + 1.

We use an approximation for case (3) that is compu-
tationally efficient and empirically gives accurate gradient

Linearize	  w.r.t.	  degrees	  of	  freedom
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Collision	  check	  against	  swept-‐out	  volume
•	  	  ConAnuous-‐Ame	  collision	  avoidance
•	  	  Allows	  coarsely	  sampling	  trajectory
•	  	  overall	  faster

•	  	  Finds	  becer	  local	  opAma
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Benchmark:	  Example	  Scenes

7	  DOF	  (one	  arm)

198	  problems

example scene (taken from MoveIt collection) example scene (imported from Trimble 3d 
Warehouse / Google Sketchup)

18	  DOF	  (two	  arms	  +	  base	  +	  torso)

96	  problems
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Benchmark	  Results

Arm planning (7 DOF) 10s limitArm planning (7 DOF) 10s limitArm planning (7 DOF) 10s limitArm planning (7 DOF) 10s limit
Trajopt BiRRT (*) CHOMP

success
time (s)
path length

99% 97% 85%
0.32 1.2 6.0

1.2 1.6 2.6

Full body (18 DOF) 30s limitFull body (18 DOF) 30s limitFull body (18 DOF) 30s limitFull body (18 DOF) 30s limit
Trajopt BiRRT (*) CHOMP (**)

success
time (s)
path length

84% 53% N/A
7.6 18 N/A

1.1 1.6 N/A

(*) Top-performing algorithm from MoveIt/OMPL
(**) Not supported in available implementation
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§ Planning	  for	  34-‐DOF	  humanoid	  
(stability	  constraints)

§ Box	  picking	  with	  industrial	  robot	  
(orientaAon	  constraints)

§ Constant-‐curvature	  3D	  needle	  
steering	  (non-‐holonomic	  constraint)

Finding Locally Optimal, Collision-Free
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Abstract—We present a novel approach for incorporating
collision avoidance into trajectory optimization as a method of
solving robotic motion planning problems. At the core of our
approach are (i) A sequential convex optimization procedure,
which penalizes collisions with a hinge loss and increases the
penalty coefficients in an outer loop as necessary. (ii) An efficient
formulation of the no-collisions constraint that directly considers
continuous-time safety and enables the algorithm to reliably solve
motion planning problems, including problems involving thin and
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We benchmarked our algorithm against several other mo-
tion planning algorithms, solving a suite of 7-degree-of-freedom
(DOF) arm-planning problems and 18-DOF full-body planning
problems. We compared against sampling-based planners from
OMPL, and we also compared to CHOMP, a leading approach
for trajectory optimization. Our algorithm was faster than the
alternatives, solved more problems, and yielded higher quality
paths.

Experimental evaluation on the following additional problem
types also confirmed the speed and effectiveness of our approach:
(i) Planning foot placements with 34 degrees of freedom (28 joints
+ 6 DOF pose) of the Atlas humanoid robot as it maintains
static stability and has to negotiate environmental constraints.
(ii) Industrial box picking. (iii) Real-world motion planning for
the PR2 that requires considering all degrees of freedom at the
same time.

I. INTRODUCTION

Trajectory optimization algorithms have two roles in robotic
motion planning. First, they can be used to smooth and shorten
trajectories generated by some other method. Second, they can
be used to plan from scratch: one initializes with a trajectory
that contains collisions and perhaps violates constraints, and
one hopes that the optimization converges to a high-quality
trajectory satisfying constraints. Using an optimization algo-
rithm to plan from scratch is an especially attractive option
in problems with many degrees of freedom (DOF), since the
computation time scales favorably with the number of DOF.

Two of the key ingredients in trajectory optimization for
motion planning are (1) the numerical optimization method,
and (2) the method of checking for collisions and penalizing
them. For numerical optimization, we use sequential convex
optimization, with `
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constraints. This approach involves solving a series of con-
vex optimization problems that approximate the cost and
constraints of the true problem, which is non-convex. For
collisions, we compute signed distances using convex-convex
collision detection, and we ensure the continuous-time safety
of a trajectory by considering the swept-out volume. These two
aspects of our approach are complementary, since our collision
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Fig. 1. Several problem settings were we have used our algorithm for motion
planning. Top left: planning an arm trajectory for the PR2 in simulation, in a
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part of configuration space, which can be directly incorporated
into the convex optimization problem that is solved at each
iteration of the optimization.

The first advantage of our approach is speed. Our imple-
mentation solves typical arm planning problems in around
100 � 200 ms and solves problems involving many more
degrees of freedom in under a second. This is largely enabled
by our novel formulation of the the collision penalty, which
guarantees safety in continuous time by considering swept-
out volumes. This cost formulation has little computational
overhead in collision checking and allows us to use a sparsely
sampled trajectory. The second advantage of our approach
is its reliability—it solves a surprisingly large fraction of
planning problems. In our experiments, our algorithm solved
a larger fraction of problems than any of the sampling-based
planners, which were given a ten second time limit. The
third advantage of our approach regards path quality: once
the trajectory is free of collisions, our approach will treat
collision avoidance as a hard constraint (i.e., keep a certain
safe distance from obstacles.) Our algorithm will converge to
a locally optimal solution subject to this constraint, without
compromising the other objective criteria. The fourth advan-
tage of our approach is flexibility: new constraints and cost
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Abstract—We present a novel approach for incorporating
collision avoidance into trajectory optimization as a method of
solving robotic motion planning problems. At the core of our
approach are (i) A sequential convex optimization procedure,
which penalizes collisions with a hinge loss and increases the
penalty coefficients in an outer loop as necessary. (ii) An efficient
formulation of the no-collisions constraint that directly considers
continuous-time safety and enables the algorithm to reliably solve
motion planning problems, including problems involving thin and
complex obstacles.

We benchmarked our algorithm against several other mo-
tion planning algorithms, solving a suite of 7-degree-of-freedom
(DOF) arm-planning problems and 18-DOF full-body planning
problems. We compared against sampling-based planners from
OMPL, and we also compared to CHOMP, a leading approach
for trajectory optimization. Our algorithm was faster than the
alternatives, solved more problems, and yielded higher quality
paths.

Experimental evaluation on the following additional problem
types also confirmed the speed and effectiveness of our approach:
(i) Planning foot placements with 34 degrees of freedom (28 joints
+ 6 DOF pose) of the Atlas humanoid robot as it maintains
static stability and has to negotiate environmental constraints.
(ii) Industrial box picking. (iii) Real-world motion planning for
the PR2 that requires considering all degrees of freedom at the
same time.

I. INTRODUCTION

Trajectory optimization algorithms have two roles in robotic
motion planning. First, they can be used to smooth and shorten
trajectories generated by some other method. Second, they can
be used to plan from scratch: one initializes with a trajectory
that contains collisions and perhaps violates constraints, and
one hopes that the optimization converges to a high-quality
trajectory satisfying constraints. Using an optimization algo-
rithm to plan from scratch is an especially attractive option
in problems with many degrees of freedom (DOF), since the
computation time scales favorably with the number of DOF.

Two of the key ingredients in trajectory optimization for
motion planning are (1) the numerical optimization method,
and (2) the method of checking for collisions and penalizing
them. For numerical optimization, we use sequential convex
optimization, with `
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penalties for equality and inequality
constraints. This approach involves solving a series of con-
vex optimization problems that approximate the cost and
constraints of the true problem, which is non-convex. For
collisions, we compute signed distances using convex-convex
collision detection, and we ensure the continuous-time safety
of a trajectory by considering the swept-out volume. These two
aspects of our approach are complementary, since our collision
checking method yields a polyhedral approximation of the free
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part of configuration space, which can be directly incorporated
into the convex optimization problem that is solved at each
iteration of the optimization.

The first advantage of our approach is speed. Our imple-
mentation solves typical arm planning problems in around
100 � 200 ms and solves problems involving many more
degrees of freedom in under a second. This is largely enabled
by our novel formulation of the the collision penalty, which
guarantees safety in continuous time by considering swept-
out volumes. This cost formulation has little computational
overhead in collision checking and allows us to use a sparsely
sampled trajectory. The second advantage of our approach
is its reliability—it solves a surprisingly large fraction of
planning problems. In our experiments, our algorithm solved
a larger fraction of problems than any of the sampling-based
planners, which were given a ten second time limit. The
third advantage of our approach regards path quality: once
the trajectory is free of collisions, our approach will treat
collision avoidance as a hard constraint (i.e., keep a certain
safe distance from obstacles.) Our algorithm will converge to
a locally optimal solution subject to this constraint, without
compromising the other objective criteria. The fourth advan-
tage of our approach is flexibility: new constraints and cost
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(DOF) arm-planning problems and 18-DOF full-body planning
problems. We compared against sampling-based planners from
OMPL, and we also compared to CHOMP, a leading approach
for trajectory optimization. Our algorithm was faster than the
alternatives, solved more problems, and yielded higher quality
paths.

Experimental evaluation on the following additional problem
types also confirmed the speed and effectiveness of our approach:
(i) Planning foot placements with 34 degrees of freedom (28 joints
+ 6 DOF pose) of the Atlas humanoid robot as it maintains
static stability and has to negotiate environmental constraints.
(ii) Industrial box picking. (iii) Real-world motion planning for
the PR2 that requires considering all degrees of freedom at the
same time.

I. INTRODUCTION

Trajectory optimization algorithms have two roles in robotic
motion planning. First, they can be used to smooth and shorten
trajectories generated by some other method. Second, they can
be used to plan from scratch: one initializes with a trajectory
that contains collisions and perhaps violates constraints, and
one hopes that the optimization converges to a high-quality
trajectory satisfying constraints. Using an optimization algo-
rithm to plan from scratch is an especially attractive option
in problems with many degrees of freedom (DOF), since the
computation time scales favorably with the number of DOF.

Two of the key ingredients in trajectory optimization for
motion planning are (1) the numerical optimization method,
and (2) the method of checking for collisions and penalizing
them. For numerical optimization, we use sequential convex
optimization, with `
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penalties for equality and inequality
constraints. This approach involves solving a series of con-
vex optimization problems that approximate the cost and
constraints of the true problem, which is non-convex. For
collisions, we compute signed distances using convex-convex
collision detection, and we ensure the continuous-time safety
of a trajectory by considering the swept-out volume. These two
aspects of our approach are complementary, since our collision
checking method yields a polyhedral approximation of the free
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part of configuration space, which can be directly incorporated
into the convex optimization problem that is solved at each
iteration of the optimization.

The first advantage of our approach is speed. Our imple-
mentation solves typical arm planning problems in around
100 � 200 ms and solves problems involving many more
degrees of freedom in under a second. This is largely enabled
by our novel formulation of the the collision penalty, which
guarantees safety in continuous time by considering swept-
out volumes. This cost formulation has little computational
overhead in collision checking and allows us to use a sparsely
sampled trajectory. The second advantage of our approach
is its reliability—it solves a surprisingly large fraction of
planning problems. In our experiments, our algorithm solved
a larger fraction of problems than any of the sampling-based
planners, which were given a ten second time limit. The
third advantage of our approach regards path quality: once
the trajectory is free of collisions, our approach will treat
collision avoidance as a hard constraint (i.e., keep a certain
safe distance from obstacles.) Our algorithm will converge to
a locally optimal solution subject to this constraint, without
compromising the other objective criteria. The fourth advan-
tage of our approach is flexibility: new constraints and cost
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which penalizes collisions with a hinge loss and increases the
penalty coefficients in an outer loop as necessary. (ii) An efficient
formulation of the no-collisions constraint that directly considers
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We benchmarked our algorithm against several other mo-
tion planning algorithms, solving a suite of 7-degree-of-freedom
(DOF) arm-planning problems and 18-DOF full-body planning
problems. We compared against sampling-based planners from
OMPL, and we also compared to CHOMP, a leading approach
for trajectory optimization. Our algorithm was faster than the
alternatives, solved more problems, and yielded higher quality
paths.

Experimental evaluation on the following additional problem
types also confirmed the speed and effectiveness of our approach:
(i) Planning foot placements with 34 degrees of freedom (28 joints
+ 6 DOF pose) of the Atlas humanoid robot as it maintains
static stability and has to negotiate environmental constraints.
(ii) Industrial box picking. (iii) Real-world motion planning for
the PR2 that requires considering all degrees of freedom at the
same time.

I. INTRODUCTION

Trajectory optimization algorithms have two roles in robotic
motion planning. First, they can be used to smooth and shorten
trajectories generated by some other method. Second, they can
be used to plan from scratch: one initializes with a trajectory
that contains collisions and perhaps violates constraints, and
one hopes that the optimization converges to a high-quality
trajectory satisfying constraints. Using an optimization algo-
rithm to plan from scratch is an especially attractive option
in problems with many degrees of freedom (DOF), since the
computation time scales favorably with the number of DOF.

Two of the key ingredients in trajectory optimization for
motion planning are (1) the numerical optimization method,
and (2) the method of checking for collisions and penalizing
them. For numerical optimization, we use sequential convex
optimization, with `
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penalties for equality and inequality
constraints. This approach involves solving a series of con-
vex optimization problems that approximate the cost and
constraints of the true problem, which is non-convex. For
collisions, we compute signed distances using convex-convex
collision detection, and we ensure the continuous-time safety
of a trajectory by considering the swept-out volume. These two
aspects of our approach are complementary, since our collision
checking method yields a polyhedral approximation of the free
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part of configuration space, which can be directly incorporated
into the convex optimization problem that is solved at each
iteration of the optimization.

The first advantage of our approach is speed. Our imple-
mentation solves typical arm planning problems in around
100 � 200 ms and solves problems involving many more
degrees of freedom in under a second. This is largely enabled
by our novel formulation of the the collision penalty, which
guarantees safety in continuous time by considering swept-
out volumes. This cost formulation has little computational
overhead in collision checking and allows us to use a sparsely
sampled trajectory. The second advantage of our approach
is its reliability—it solves a surprisingly large fraction of
planning problems. In our experiments, our algorithm solved
a larger fraction of problems than any of the sampling-based
planners, which were given a ten second time limit. The
third advantage of our approach regards path quality: once
the trajectory is free of collisions, our approach will treat
collision avoidance as a hard constraint (i.e., keep a certain
safe distance from obstacles.) Our algorithm will converge to
a locally optimal solution subject to this constraint, without
compromising the other objective criteria. The fourth advan-
tage of our approach is flexibility: new constraints and cost
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Abstract—We present a novel approach for incorporating
collision avoidance into trajectory optimization as a method of
solving robotic motion planning problems. At the core of our
approach are (i) A sequential convex optimization procedure,
which penalizes collisions with a hinge loss and increases the
penalty coefficients in an outer loop as necessary. (ii) An efficient
formulation of the no-collisions constraint that directly considers
continuous-time safety and enables the algorithm to reliably solve
motion planning problems, including problems involving thin and
complex obstacles.

We benchmarked our algorithm against several other mo-
tion planning algorithms, solving a suite of 7-degree-of-freedom
(DOF) arm-planning problems and 18-DOF full-body planning
problems. We compared against sampling-based planners from
OMPL, and we also compared to CHOMP, a leading approach
for trajectory optimization. Our algorithm was faster than the
alternatives, solved more problems, and yielded higher quality
paths.

Experimental evaluation on the following additional problem
types also confirmed the speed and effectiveness of our approach:
(i) Planning foot placements with 34 degrees of freedom (28 joints
+ 6 DOF pose) of the Atlas humanoid robot as it maintains
static stability and has to negotiate environmental constraints.
(ii) Industrial box picking. (iii) Real-world motion planning for
the PR2 that requires considering all degrees of freedom at the
same time.

I. INTRODUCTION

Trajectory optimization algorithms have two roles in robotic
motion planning. First, they can be used to smooth and shorten
trajectories generated by some other method. Second, they can
be used to plan from scratch: one initializes with a trajectory
that contains collisions and perhaps violates constraints, and
one hopes that the optimization converges to a high-quality
trajectory satisfying constraints. Using an optimization algo-
rithm to plan from scratch is an especially attractive option
in problems with many degrees of freedom (DOF), since the
computation time scales favorably with the number of DOF.

Two of the key ingredients in trajectory optimization for
motion planning are (1) the numerical optimization method,
and (2) the method of checking for collisions and penalizing
them. For numerical optimization, we use sequential convex
optimization, with `
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penalties for equality and inequality
constraints. This approach involves solving a series of con-
vex optimization problems that approximate the cost and
constraints of the true problem, which is non-convex. For
collisions, we compute signed distances using convex-convex
collision detection, and we ensure the continuous-time safety
of a trajectory by considering the swept-out volume. These two
aspects of our approach are complementary, since our collision
checking method yields a polyhedral approximation of the free
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part of configuration space, which can be directly incorporated
into the convex optimization problem that is solved at each
iteration of the optimization.

The first advantage of our approach is speed. Our imple-
mentation solves typical arm planning problems in around
100 � 200 ms and solves problems involving many more
degrees of freedom in under a second. This is largely enabled
by our novel formulation of the the collision penalty, which
guarantees safety in continuous time by considering swept-
out volumes. This cost formulation has little computational
overhead in collision checking and allows us to use a sparsely
sampled trajectory. The second advantage of our approach
is its reliability—it solves a surprisingly large fraction of
planning problems. In our experiments, our algorithm solved
a larger fraction of problems than any of the sampling-based
planners, which were given a ten second time limit. The
third advantage of our approach regards path quality: once
the trajectory is free of collisions, our approach will treat
collision avoidance as a hard constraint (i.e., keep a certain
safe distance from obstacles.) Our algorithm will converge to
a locally optimal solution subject to this constraint, without
compromising the other objective criteria. The fourth advan-
tage of our approach is flexibility: new constraints and cost
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+ 6 DOF pose) of the Atlas humanoid robot as it maintains
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the PR2 that requires considering all degrees of freedom at the
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Trajectory optimization algorithms have two roles in robotic
motion planning. First, they can be used to smooth and shorten
trajectories generated by some other method. Second, they can
be used to plan from scratch: one initializes with a trajectory
that contains collisions and perhaps violates constraints, and
one hopes that the optimization converges to a high-quality
trajectory satisfying constraints. Using an optimization algo-
rithm to plan from scratch is an especially attractive option
in problems with many degrees of freedom (DOF), since the
computation time scales favorably with the number of DOF.

Two of the key ingredients in trajectory optimization for
motion planning are (1) the numerical optimization method,
and (2) the method of checking for collisions and penalizing
them. For numerical optimization, we use sequential convex
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penalties for equality and inequality
constraints. This approach involves solving a series of con-
vex optimization problems that approximate the cost and
constraints of the true problem, which is non-convex. For
collisions, we compute signed distances using convex-convex
collision detection, and we ensure the continuous-time safety
of a trajectory by considering the swept-out volume. These two
aspects of our approach are complementary, since our collision
checking method yields a polyhedral approximation of the free
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part of configuration space, which can be directly incorporated
into the convex optimization problem that is solved at each
iteration of the optimization.

The first advantage of our approach is speed. Our imple-
mentation solves typical arm planning problems in around
100 � 200 ms and solves problems involving many more
degrees of freedom in under a second. This is largely enabled
by our novel formulation of the the collision penalty, which
guarantees safety in continuous time by considering swept-
out volumes. This cost formulation has little computational
overhead in collision checking and allows us to use a sparsely
sampled trajectory. The second advantage of our approach
is its reliability—it solves a surprisingly large fraction of
planning problems. In our experiments, our algorithm solved
a larger fraction of problems than any of the sampling-based
planners, which were given a ten second time limit. The
third advantage of our approach regards path quality: once
the trajectory is free of collisions, our approach will treat
collision avoidance as a hard constraint (i.e., keep a certain
safe distance from obstacles.) Our algorithm will converge to
a locally optimal solution subject to this constraint, without
compromising the other objective criteria. The fourth advan-
tage of our approach is flexibility: new constraints and cost
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