
Tracking Deformable Objects with Point Clouds

John D. Schulman, Alex X. Lee, Jonathan Ho, Pieter Abbeel

Abstract— We introduce an algorithm for tracking de-
formable objects from a sequence of point clouds. The proposed
tracking algorithm is based on a probabilistic generative model
that incorporates observations of the point cloud and the
physical properties of the tracked object and its environment.
We propose a modified expectation maximization algorithm
to perform maximum a posteriori estimation to update the
state estimate at each time step. Our modification makes it
practical to perform the inference through calls to a physics
simulation engine. This is significant because (i) it allows for
the use of highly optimized physics simulation engines for the
core computations of our tracking algorithm, and (ii) it makes
it possible to naturally, and efficiently, account for physical
constraints imposed by collisions, grasping actions, and material
properties in the observation updates.

Even in the presence of the relatively large occlusions
that occur during manipulation tasks, our algorithm is able
to robustly track a variety of types of deformable objects,
including ones that are one-dimensional, such as ropes; two-
dimensional, such as cloth; and three-dimensional, such as
sponges. Our implementation can track these objects in real
time.

I. INTRODUCTION

Most objects we interact with in our everyday lives, such
as food, clothing, paper, and living creatures, are deformable.
In order to teach robots to make us breakfast, tidy up our
rooms, or assist in surgical operations, we need to enable
them to perceive and control these objects in unstructured
environments.

Due to the high dimensionality of the state spaces of
deformable objects, perceiving deformable objects is much
more difficult than perceiving rigid objects. Often, self-
occlusions make it impossible to infer the full states of
deformable objects from a single view. In addition, many de-
formable objects of interest lack distinguishable key-points.

We present a new probabilistic approach for tracking
deformable objects, inspired by (i) New high frame-rate 3D
sensory capabilities provided by RGB-D cameras such as
the Microsoft Kinect and by (ii) Advances in algorithms for
computer simulation of physics and in modern computational
capabilities, which together enable real-time simulation of
deformable objects in general-purpose physics simulators.
Our approach defines a probabilistic model for the object
and environment dynamics, as well as for the sensory mea-
surements, and we provide an efficient algorithm to perform
the probabilistic inference in this model.

Department of Electrical Engineering and Computer Science, University
of California, Berkeley, Berkeley, CA 94709.

Fig. 1: The left panels show camera images of the tracked
objects, and the right panels show renderings of our state es-
timates. Note that the viewpoints are different; our algorithm
infers the 3D configuration of the object.

A summary of our contributions is as follows:
• A new probabilistic observation model that addresses

unknown point correspondences and occlusions.
• A modified EM algorithm to perform inference in this

model: We show how the probabilistic inference for
finding the maximum a posteriori estimate of the state
at each time step can be performed through calls to the
physics-based simulation. This is significant because (i)

it allows for the use of highly optimized physics simu-
lation engines for the core computations of our tracking
algorithm, and (ii) it makes it possible to naturally, and
efficiently, account for physical constraints imposed by
collisions, grasping actions, and material properties in
the observation updates.

• An implementation that can successfully track a variety
of extremely deformable objects in real time as they
are manipulated by a human or a robot. To the authors’
knowledge, we present the first results of tracking
extremely deformable objects such as rope and cloth
under arbitrary manipulations (including knot tying and
folding). Our implementation runs in real time and is
suitable for closed-loop control in robotic manipulation
tasks. Videos of the results can be found at http://
rll.berkeley.edu/tracking, along with source
code and our ground truth dataset (described in Section
IX.)

II. PREVIOUS WORK

The idea of using physical models to estimate the state of
objects in images dates back to the influential papers by Kass,
Terzopoulous, and Witkin [10, 19]. They defined energy
functions for parametric curves and surfaces; these energy
functions contained an “external” energy that attracted the
curves and surfaces to image features and an “internal”
energy that penalized excessive curvature or deformation,
providing regularization. These methods, called active con-
tours and active surfaces (or, equivalently, snakes) have
been widely used in computer vision, for example, to find
the outlines of objects in images and video. Metaxas and
Terzopoulos proposed an algorithm for tracking deformable
objects that had a particular parameterization (linked su-
perquadrics) [11]. Their approach provides a second-order
dynamics model for these objects and uses a Extended
Kalman Filter to update the positions and covariances of the
objects’ degrees of freedom.

Tracking is closely related to registration, where the typi-
cal problem is to find a nonlinear warping function that maps
one surface, image, or point cloud onto another. The last two
decades have seen a lot of progress in registration of points
and volumes, motivated by problems in 3D modeling and
medical image analysis.

The simplest algorithm for registration of point clouds,
assumed to come from a rigid object, is the iterative closest
point (ICP) algorithm [3, 1]. The ICP algorithm alternates
between (1) calculating correspondences between points and
(2) solving for a transformation that maximally aligns the
corresponding points. The ICP algorithm has been general-
ized to allow for transformations other than rigid motions.
Chui and Rangarajan [4] alternated fitting a non-rigid trans-
formation with a soft-assignment correspondence calculation.
Hahnel, Thrun, and Burgard seek to reconstruct the geometry
of non-stationary, non-rigid objects; they endow the acquired
point clouds with a link structure and register pairs of scans
using an ICP-like optimization [8].

A variety of other work addresses problems in registration,
state estimation, and tracking of deformable objects. One

important and well-studied problem is the non-rigid regis-
tration of 3D medical images. Murphy et al. [13] give an
assessment of modern approaches to this problem. Saltzmann
et al. [17] provide an algorithm to track a deforming surface;
their approach uses a reduced-dimensionality parametrization
of a textured surface and relies on keypoint matches. De
Aguiar et al. [5] track the human body based on video data
from multiple cameras using a 3D textured mesh model and
optimizing a set of control points in each video frame using
an optical flow-based method. Miller et al. [12] visually infer
the state of a folded piece of cloth by optimizing a geometric
model of folded clothing that mostly relies on the contour.

III. PROBABILISTIC MODEL FOR OBSERVATIONS

This section describes our probabilistic model for the
process by which a tracked deformable object generates
observations in the form of a point cloud. Each tracked
object has a corresponding physical model.1 As is common
in computer-based simulation of such objects, we assume this
physical model has a set of K points with 3D coordinates
m1,m2, . . . ,mK , which we will abbreviate as m1:K , that
completely define the current configuration of the object.
These control points could be on the backbone of a rope,
or they could be a set of vertices of a triangulation of a
piece of cloth, or a set of vertices of a tetrahedral mesh of a
sponge, respectively (see Figure 2 for illustration). At each
time step, the sensor hardware generates from the visible
portion of the object a point cloud consisting of N 3D points.
We use c1, c2, . . . , cN , abbreviated by c1:N , to refer to the
coordinates of the points in the point cloud.

In Section V, we consider the generalization where each
of the K nodes and each of the N points in the point cloud
is associated with a d−dimensional feature vector (d ≥ 3)
that locally characterizes the object. The feature vector’s
components include position and optionally color and texture
descriptors. However, in the following discussion, mi ∈ R3

and ci ∈ R3.

Fig. 2: Physical model for three classes of deformable object:
(a) one-dimensional object, which we model as a chain, (b)
two-dimensional object, which we model as a mass-spring
system on a triangular mesh, (c) three-dimensional object,
which we model as a mass-spring system on a tetrahedral
mesh.

1Our approach does not depend on the specifics of the physical model
used for simulation. The physical models we used in our experiments were
chosen based on accuracy under real-time constraints and availability in
state-of-the-art physics-based simulation engines. We used Bullet, which
uses fairly standard models and methods for real-time simulation. Rope is
simulated as a chain of linked capsules with bending and torsional energy
at the joints. Cloth and sponge are simulated as mass spring systems on
triangular and tetrahedral meshes.

http://rll.berkeley.edu/tracking
http://rll.berkeley.edu/tracking

At each time step, our goal is to infer the values of m1:K

given the point cloud c1:N . The correspondence between the
point cloud and the model’s control points is not known and
must be inferred. These correspondences are encoded in the
“responsibility” variables zkn which indicate if the object
surface nearest to mk generated observation cn:

zkn = 1[mk is responsible for cn]. (1)

We also include a source of “noise points” in our probabilis-
tic model, which are not generated by the tracked object.
Noise points may occur because of errors in background
subtraction and incorrect registration between color and
depth images. The variable zK+1,n indicates if the nth point
is noise:

zK+1,n = 1[cn is a noise point]. (2)

The probability distribution of noise points is uniform
throughout space with density ρnoise

p(cn|zK+1,n = 1) = ρnoise (3)

for some parameter ρnoise. (Note that this distribution is
not normalized.) The following heuristic choice of ρnoise
is empirically good: ρnoise = .05 cm−3.

The visibility or occlusion of the object is described by
the visibility variables, vk, k = 1, 2, . . . ,K, where

vk = 1[mk is visible from the camera]. (4)

Explicitly, our probabilistic generative model assumes the
data generation process is as follows:

• For each n ∈ 1, 2, . . . , N , an index kn ∈ 1, 2, . . . ,K +
1 is selected to be responsible for that point, where
p(kn = k) ∝ vk, i.e.,

p(kn = k) =

{
vk∑

k′ vk′+1 for k = 1, 2, . . . ,K
1∑

k′ vk′+1 for k = K + 1

(5)

The responsibility variables zkn represent this selection
as follows

zkn =

{
1 if k = kn

0 otherwise
(6)

• cn is normally distributed cn ∼ N (mk,Σk) if point n
is not noise, else cn is distributed with uniform density
ρnoise throughout space.

• Each node is associated with a diagonal covariance
matrix Σk = diag((σx)2, (σy)2, (σz)2), where the σ
are chosen to be approximately the distance between
nodes on the object.

Lastly, we put a prior on m1:K :

p(m1:K) = e−
1
ηV0(m1:K) (7)

where V0(m1:K) is the potential energy of the tracked object,
which includes gravitational potential energy and bending
energy. V0(m1:K) = ∞ for disallowed states, e.g., states
where solid objects overlap. Using this prior V0 corresponds

to assuming a quasi-static scenario where objects move
slowly and are continually at low-energy configurations.

The probabilistic graphical model is depicted in Figure 3.
Without the visibility variables and the prior on m, this
model is a mixture of Gaussians model. However, a fun-
damentally different inference procedure is necessary due
to the need for incorporation of the physical properties and
constraints in this problem.

mk vk

Σk zkn zK+1,n

cn

×K

×N

Fig. 3: Graphical model for the observed point cloud

The probability of the state at time t + 1, mt+1
1:K , has

no explicit dependence on the previous estimate mt
1:K .

However, the inference algorithm at time t + 1 will be
initialized using mt

1:K , and the optimization (described be-
low) will converge to the local maximum of probability
log p(mt+1

1:K |c
t+1
1:N) whose basin of attraction includes mt

1:K .
This corresponds to assuming quasi-static dynamics. This
scheme will ensure, for example, that a tied knot will remain
tied, that rigid objects can’t intersect, etc., as well as prefer
low-energy states.

IV. INFERENCE

For each observation (point cloud), our algorithm’s task is
to find the most probable node positions given the measure-
ment, i.e., to calculate

arg max
m1:K

p(m1:K |c1:N). (8)

To solve this maximum a posteriori (MAP) estimation prob-
lem, we use the expectation maximization (EM) algorithm.
The EM algorithm is typically used in the setting of maxi-
mum likelihood estimation, but it can just as well be used for
MAP estimation. In the present problem, the distinction is
important because we put a prior on the state p(m1:K) that
penalizes, e.g., floating objects and excessive bending. The
EM algorithm alternates between generating a lower bound
to the log-probability function based on an expectation over
the latent variables (E step) and maximizing this lower bound
with respect to the node positions (M step) [14, 6].

For self-containedness, and to be able to precisely artic-
ulate our contributions that made the probabilistic inference

practical in our setting, we will review the EM algorithm
formulation in the setting of a general probabilistic model
(with notation suggestive to the current problem), and then
we’ll describe its specialization to the current problem in the
following two subsections.

Let M denote the random variables we are trying to infer,
let C denote the observed variables, and let Z denote some
other latent variables that we will marginalize over. Our aim
is to find the most probable M:

arg max
M

log p(M,C) = log p(C|M) + log p(M), (9)

which is equivalent to maximizing p(M|C). We exploit the
following identity, which holds for an arbitrary distribution
q(z):

log p(M,C) = Lq(M) +KL(q|p) + log p(M) (10)

where

Lq(M) =
∑
Z

q(Z) log

(
p(C,Z|M)

q(Z)

)
(11)

KL(q|p) = −
∑
Z

q(Z) log

(
p(Z|C,M)

q(Z)

)
. (12)

Lq(M) serves as our lower bound to the log-likelihood
function log p(C|M) since the Kullback-Leibler divergence
KL(q|p) is always positive. The ith iteration is as follows:

• E step: q(i)(Z)← p(Z|C,M(i−1)).
• M step: M(i) ← arg maxM

[
Lq(i)(M) + log p(M)

]
The actual objective log p(M,C) is guaranteed not to de-
crease

log p(Mi,C) ≤ log p(Mi+1,C) i = 1, 2, 3, . . . (13)

and it is unchanged only if both Lq and M are unchanged
in an iteration.

E step
In the observation model considered in this paper, the

E step computes p(zkn|c1:N ;m1:K). First we compute the
visibility variables vk, which are a deterministic function of
the scene and the depth image. Specifically, a ray-casting
operation detects if the line segment from the camera to
mk is blocked by some modeled object (e.g., the robot or
the tracked object itself). We also check if the depth image
contains a point significantly in front of mi.

1− vk = 1
[
mi is occluded by a modeled object ∪
depth(i, j) < ‖mi‖ − 3 cm

]
. (14)

Then we apply Bayes rule to calculate the posterior proba-
bility of the correspondence variables:

p(zkn = 1|m1:K , c1:N) (15)

=
p(cn|zkn = 1,mk)p(zkn = 1)

p(cn)
(16)

=
p(cn|zkn = 1,mk)vk∑K

k′=1 p(cn|zk′n = 1,mk)vk′ + ρnoise
(17)

=
N (cn;mk,Σk)vk∑K

k′=1N (cn;mk′)vk′ + ρnoise
. (18)

The log-probability lower bound is calculated as follows:

Lq(m1:K) =
∑
Z

p(Z) log p(c1:N |m1:K ,Z) (19)

=
∑
Z

p(Z) log
∏
n

∏
k

p(cn|mk, zkn = 1)zkn

(20)

=
∑
Z

p(Z)
∑
n

∑
k

zkn log p(cn|mk, zkn = 1)

(21)

=
∑
n

∑
k

αnk logN (cn;mk,Σk) (22)

where

αnk = E[zkn|m1:K , c1:N] = p(zkn = 1|m1:K , c1:N) (23)

Finally, the total log-probability lower bound (Equation 10)
is

log p(m1:K , c1:N) = log p(m1:K) + log p(c1:N |m1:K)

(24)

= V0(m1:K) +
∑
n

∑
k

αnk logN (cn;mk,Σk).

(25)

M step

The M step solves the optimization problem

arg max
m1:K

[Lq(m1:K) + log p(m1:K)] (26)

This is a hard optimization problem due to the numerous
non-convex costs and constraints in our physics-based prior,
such as non-penetration of solids and resistance to stretching
and bending. In this section we describe how this hard
optimization problem can be solved efficiently by taking
advantage of physics-based simulation engines.

The second term in Equation (26) corresponds exactly to
the (negative of the) potential energy of our system. Simply
running the physics simulation would lead the system to a
local minimum in potential energy (since the total energy
monotonically decreases due to damping) while respecting
all of the physical constraints, but would fail to account for
the first term in Equation (26), which is there to account for
the observations.

To make the physics-based simulation engine account for
the first term, we impose an artificial “observation” potential
energy V obs(m1:K) = −ηLq(m1:K). With the observation
potential added, the potential energy becomes precisely the
negative of the log-probability expression that we are trying
to optimize (times a constant factor η):

V (m1:K) = V0(m1:K) + V obs(m1:K) (27)
= −η [log p(m1:K) + Lq(m1:K)] (28)

To practically impose the observation potential, we contin-
ually introduce external forces into the simulation engine—
applying an external force at each point mass equal to the

negative gradient of the observation potential energy at that
point, which is given by:

fobsk = −∇mk
L(m1:K). (29)

Further, we add a viscous damping force to ensure that
the total energy (kinetic plus potential) of the system never
increases:

fdampk = −γṁk. (30)

The total energy (kinetic plus potential) of the physical
system is guaranteed to converge (since due to dissipation,
the energy will decrease if any velocity is nonzero).

The observation forces fobs are calculated as follows:

L(m1:K) = log p(c1:N |m1:K) (31)

=
∑
n

∑
k

αnk logN (cn;mk,Σk) (32)

=
∑
n

∑
k

αnk(cn −mk)TΣ−1
k (cn −mk) + const. (33)

Taking the gradient,

fobsk = η∇mk
L(m1:K) (34)

= η
∑
n

αnkΣ−1
k (cn −mk) (35)

In practice, we find that it is satisfactory to ignore the scaling
due to Σk and simply set

fobsk = λ
∑
n

αnk(cn −mk) (36)

for some λ that is chosen empirically to yield fast conver-
gence without instability.

In the present work, the tracked object is modeled as a
collection of linked rigid bodies or particles. The physics
simulation (we use the Bullet physics engine) uses a linear
complementarity problem (LCP) based constraint solver to
perform discrete-time integration of the dynamical equations,
i.e., to solve for the motion of the objects that is consistent
with the Newton-Euler equations of motion. The constraint
solver uses a fast iterative algorithm, Projected Gauss-Seidel,
to approximately solve the LCP at each timestep. We will
not dwell further on the details of the simulation, since our
algorithm works with any realistic physics simulation, but
the reader is referred to [2] for details.

In summary, the M step involves a hard maximization
problem, but our formulation lets us perform the maxi-
mization by applying observation forces and time-stepping a
generic physics simulator. This scheme allows us to leverage
a highly optimized physics simulation with support for a
diverse variety of different types of objects.

V. FEATURES

Our tracking algorithm can be straightforwardly general-
ized to associate a vector of invariant features with each
point, not just its (x, y, z) coordinates. Informative features
shrink down the set of possible point correspondences, gen-
erally enhancing tracking and registration algorithms [18].

Let us first consider the most straightforward addition
to the feature vector: color. We used the CIE LAB color
space because of its uniformity [7]. With this scheme, each
model node and each observed point is associated with a
six-dimensional vector (x, y, z, l, a, b); the six-dimensional
descriptor vectors are denoted mφ

k and cφk , respectively. We
also choose covariances σl, σa, σb based on estimates of how
much these color descriptions vary (e.g. σa = σb = .2, σl =
.4, when l, a, b ∈ [0, 1]). Let Σφk denote the 6× 6 covariance
matrix diag(σx, σy, σz, σl, σa, σb).

The modification to the probabilistic model is that the
Gaussian conditional likelihood includes the new color co-
ordinates:

p(cφn|m
φ
k ,Σ

Φ
k , znk = 1) = N (cφn;mφ

k ,Σ
φ
k). (37)

In the inference procedure, this just changes the posterior
probabilities p(zkn|mφ

1:K , c
φ
1:N) and thus the expected cor-

respondences αkn that we calculate in the E step. The M step
is unchanged: unlike the positions, the nodes’ color features
are not updated. Conceivably, though, one could update the
colors, and this might allow one to texture-map a previously
unseen object.

One can also augment the feature vector with a variety of
other descriptors of texture.

VI. REAL-TIME ALGORITHM

A real-time implementation of the inference algorithm
alternates E step updates with incomplete M step updates.
As described in Algorithm 1, we do as many EM iterations
as possible before the next observed point cloud arrives.

For each point cloud received :
c1:N ← calculate features from point cloud
Repeat until new point cloud received :
m1:K ← calculate features from simulation
v1:K ← calculate node visibility (14)
α1:K,1:N ← calc. expected correspondences (23)
fobs1:K , f

damp
1:K ← calculate forces (36)

Apply forces fobs1:K , f
damp
1:K to nodes

Step physics simulation

Algorithm 1: Real-time tracking algorithm

VII. INITIALIZATION

This section briefly describes how we initialize the model
of a previously unseen rope or piece of cloth.

A. Rope

Given a point cloud of a 1D object, such as rope, which
may contain some crossings, our initialization procedure is
able to infer its 3D curve. The procedure is summarized as
follows:

1) Construct a weighted, undirected graph G whose ver-
tices are points in the point cloud. Vertices pi and

pj with distance dij = ‖pi − pj‖ are connected by
an edge of weight dij if dij < thresh where, e.g.,
thresh = 1 cm.

2) Form the Reeb graph of G based on geodesic distance
from an arbitrary point in the graph [9].

3) Consider the set of oriented edges of the Reeb graph.
Find the best sequence of oriented edges, according to
an objective that favors long paths and penalizes sharp
angles and jumps.

B. Surfaces

Given a point-cloud of a 2D object, such as a single piece
of cloth, we first generate a triangulated mesh covering the
surface. Then we texture-map the surface by projecting the
RGB image onto it.

VIII. SOFTWARE IMPLEMENTATION

We have developed a complete pipeline for tracking non-
rigid objects in real time. The complete source code is
available at the url in the introduction. ROS [15] is used
for inter-process communication. The pipeline is illustrated
in Figure 4.

Initializer

RGBD Camera Preprocessor Tracker

Fig. 4: Tracking pipeline.

First, the sensor (MS Kinect or Asus Xtion Pro Live)
acquires an RGB image and a depth image, and the OpenNI
driver software projects the 3D points from the depth image
onto the RGB camera, generating a colored point cloud.

Next, the preprocessor filters out the points that belong to
the object of interest. Since pixel labeling and image segmen-
tation was not our focus, we performed our experiments on
top of a green tablecloth, and the human wore green gloves,
allowing us to use a simple color-based filtering scheme
together with GrabCut [16] (implemented in OpenCV) to
separate the object from the its background. In the tracking
scenarios involving the robot we also used the kinematic
model of the robot to filter out its points. The point cloud
is downsampled using a 1 cm voxel grid before being sent
to the tracker. Although the segmentation is not perfect, the
tracking algorithm is robust enough to outliers for this to be
acceptable.

On the first timestep, the tracker sends the point cloud
to the initializer. The initializer first classifies which type of
object is present using some shape-based heuristics. Based
on the object type, a different initialization method chosen
as described in section VII and the object geometry is sent
back to the tracker.

The preprocessing and tracking pipeline is able to track
rope and towels while robots and and humans are manipu-
lating these objects at moderate speeds. The accuracy and
frame-rate is limited by the number of EM iterations it

can perform per second, which depends on (1) the density
that the point cloud is sampled and (2) the density that
nodes are sampled on the surface of the tracked object. See
Table I for some typical timing statistics. The bottlenecks
in this computation are the correspondence calculation and
the physical simulation. It would not be meaningful to

K N iter time (ms)
rope 100 ≈ 500 20
cloth 1395 ≈ 600 50
sponge 150 ≈ 200 20

TABLE I: Typical timing results for rope, cloth, and a large
sponge. K is the number of object nodes, and N is the
number of points in the point cloud associated with the
object.

include a “frames per second” statistic, since the performance
gradually degrades as a function of the speed that the object
is moving, but qualitatively speaking, the algorithm can track
the objects accurately at 10 frames per second as they are
manipulated at a reasonable speed.

IX. EXPERIMENTAL RESULTS

We performed experiments tracking a rope and a cloth
using one or two cameras, with or without color information.
We colored the rope red, white, and blue so it would contrast
with the green background, and we chose an American
flag for the same reason. In one set of experiments, the
manipulation was performed by a robot; the robot was
included in the simulation. In the other set of experiments,
the manipulation was performed by a human; of course, the
human was not modeled in the simulation, but the tracking
still works reliably in the presence of moderate occlusions
despite not being aware of the human hand and its contact
with the object.

To quantitatively evaluate the perfomance of our tracking
algorithm, we collected ground truth data using a commercial
motion capture system: the PhaseSpace Impulse. This system
precisely tracks the coordinates of a collection of LEDs
which are uniquely identified by temporal pulse patterns. We
attached 8 LEDs to a rope and 18 LEDs to a piece of cloth
for these experiments; the objects are shown in Figure 5.

We enacted the following scenarios to test the performance
of our tracking algorithm:

• Six cloth folds by a human: single folds along both
diagonals and both principal axes, a double fold into
quarters, and a fold into thirds;

• Four rope manipulations by a human: tying an overhand
knot, tying a double-overhand knot, tying a figure-eight
knot, and untying an overhand knot;

• Three rope manipulations by a robot: tying two figure-
eight knots, and tying an overhand knot.

Some camera views from these manipulations are shown in
Figure 6.

For the human manipulation scenarios, we ran our tracking
algorithm in three data collection modes: (i) with point
clouds from one RGBD camera with color features, (ii) with
point clouds from two RGBD cameras with color features,

Fig. 5: Ground truth markers on the objects to be tracked.

and (iii) with point clouds from one RGBD camera without
color features.

Fig. 6: Manipulation experiments during ground truth data
collection with active marker system: human ties a knot
(upper left), robot ties a knot (upper right), human folds a
towel multiple times (bottom).

The tracking algorithm performed the most robustly in
the experiments where a human manipulated cloth. The
algorithm tracked the cloth in a qualitatively correct way
in all three data collection modes in each of the six tasks.
We only observed significant deviations between the state
estimate and reality when one region of the cloth occluded
another region in the single-camera mode, making the state
ambiguous. We measured the mean tracking error by av-
eraging, over all marker observations, the distance from
estimated marker position to actual position. (Each marker
was associated with a particular point on a triangle in the
mesh model, yielding the estimated positions.) The mean
error was 2− 3 cm in the cloth manipulation task, as shown
in Figure 7.

During the human rope manipulation, the algorithm was
also successsful in most trials, i.e., the simulated rope had

the correct toplogy at the end of the manipulation, though
there were a couple failures that occurred when the person’s
hand occluded a critical part of the rope, causing an incorrect
over- or under-crossing. The errors in this task are shown in
Figure 8.

The last type of scenario–robot manipulating rope–was the
most challenging and had the lowest success rate. That is
because we only used the data from a head-mounted camera,
and the rope was mostly occluded by the bulky arms, which
made tracking very difficult. The results from this task are
shown in Figure 9.

diag
-left

diag
-right

double long short thirds
0
2
4
6
8
10

FAIL

er
ro
r(
cm
)

one-cam/color
two-cam/no-color
two-cam/color

Fig. 7: Mean error in cloth manipulated by human.

over-
hand I

over-
hand II

double
-overhand

figure8 overhand
+untie

0
2
4
6
8

10

FAIL

er
ro

r(
cm

)

one-cam/color
two-cam/no-color
two-cam/color

Fig. 8: Mean error in tracking rope manipulated by human.
Failures are indicated with maximum-height bars in the plot,
indicating that the final configuration is qualitatively different
between the estimated and true state (i.e., the knot is not
completed). The other bars indicate qualitative success.

Our datasets are posted at the project webpage linked to
in the Introduction.

X. FUTURE WORK

One limitation of the proposed algorithm is that once
the state estimate becomes sufficiently far from reality, it
usually does not recover. It would be interesting to augment
the tracking approach we proposed to consider multiple
hypotheses and escape from local minima in the optimiza-
tion. Another interesting extension of this work would be to
combine tracking with model building to incrementally learn
a physical model of a previously unseen object, where the

overhand figure
-eight I

figure
-eight II

0
2
4
6
8

10

FAIL

er
ro

r(
cm

)
no-color
color

Fig. 9: Mean error in tracking rope manipulated by robot.
Failures are indicated with tall bars as above.

model includes the object’s geometry, surface texture, and
physical properties.

XI. CONCLUSION

We presented an algorithm for tracking deformable ob-
jects, based on point cloud data. The approach is effective
for tracking extremely deformable objects, such as rope
and cloth, in the presence of occlusions. Unlike previous
approaches, our tracking algorithm is built on a generic
physics simulation, so it can be used to track essentially
anything that one can simulate. Our software implementation
can initialize and track a variety of objects in real time using
a single algorithm.

We hope that this general-purpose algorithm will enable
advances in robotic manipulation by allowing robots to
continually track the state of objects they manipulate. Our
eventual goal with this line of work is to enable an intelligent
robot to maintain an internal, physical simulation of the
world that is synchronized with the real world, and to use
this representation in its planning and control algorithms.

REFERENCES

[1] Paul J. Besl and Neil D. McKay. A Method for
Registration of 3-D Shapes. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 14(2), 1992.

[2] E. Catto. Iterative dynamics with temporal coherence.
In Game Developer Conference, pages 1–24, 2005.

[3] Yang Chen and Gerard Medioni. Object Modeling by
Registration of Multiple Range Images. In Proceedings
of the 1991 IEEE International Conference on Robotics
and Automation, 1991.

[4] H. Chui and A. Rangarajan. A new point matching
algorithm for non-rigid registration. Computer Vision
and Image Understanding, 89(2):114–141, 2003.

[5] E. De Aguiar, C. Theobalt, C. Stoll, and H.P. Seidel.
Marker-less deformable mesh tracking for human shape
and motion capture. In Computer Vision and Pattern
Recognition, 2007. CVPR’07. IEEE Conference on,
pages 1–8. IEEE, 2007.

[6] A.P. Dempster, N.M. Laird, and D.B. Rubin. Max-
imum likelihood from incomplete data via the EM
algorithm. Journal of the Royal Statistical Society.
Series B (Methodological), pages 1–38, 1977.

[7] D.A. Forsyth and J. Ponce. Computer vision: a modern
approach. Prentice Hall Professional Technical Refer-
ence, 2002.

[8] D. Hahnel, S. Thrun, and W. Burgard. An extension of
the ICP algorithm for modeling nonrigid objects with
mobile robots. In International Joint Conference on
Artificial Intelligence, volume 18, pages 915–920, 2003.

[9] M. Hilaga, Y. Shinagawa, T. Kohmura, and T.L. Ku-
nii. Topology matching for fully automatic similarity
estimation of 3d shapes. In Proceedings of the 28th an-
nual conference on Computer graphics and interactive
techniques, pages 203–212. ACM, 2001.

[10] Michael Kass, Andrew Witkin, and Demetri Terzopou-
los. Snakes: Active contour models. International
Journal of Computer Vision, 1(4):321–331, January
1988.

[11] D. Metaxas and D. Terzopoulos. Shape and nonrigid
motion estimation through physics-based synthesis.
IEEE Transactions on Pattern Analysis and Machine
Intelligence, 15(6):580–591, June 1993.

[12] S. Miller, M. Fritz, T. Darrell, and P. Abbeel.
Parametrized shape models for clothing. In Robotics
and Automation (ICRA), 2011 IEEE International Con-
ference on, pages 4861–4868. IEEE, 2011.

[13] K. Murphy, B. Van Ginneken, J.M. Reinhardt, S. Kabus,
K. Ding, X. Deng, K. Cao, K. Du, G.E. Christensen,
V. Garcia, et al. Evaluation of registration methods on
thoracic ct: The empire10 challenge. IEEE transactions
on medical imaging, 30(11):1901, 2011.

[14] R.M. Neal and G.E. Hinton. A view of the EM
algorithm that justifies incremental, sparse, and other
variants. In M. Jordan, editor, Learning in Graphical
Models, pages 355–368. MIT Press, 1998.

[15] M. Quigley, K. Conley, B. Gerkey, J. Faust, T. Foote,
J. Leibs, R.̃ Wheeler, and A.Y. Ng. ROS: an open-
source robot operating system. In ICRA Workshop on
Open Source Software, volume 3, 2009.

[16] Carsten Rother, Vladimir Kolmogorov, and Andrew
Blake. “GrabCut”: interactive foreground extraction us-
ing iterated graph cuts. ACM Trans. Graph., 23(3):309–
314, August 2004.

[17] M. Salzmann, J. Pilet, S. Ilic, and P. Fua. Surface defor-
mation models for nonrigid 3d shape recovery. Pattern
Analysis and Machine Intelligence, IEEE Transactions
on, 29(8):1481–1487, 2007.

[18] G.C. Sharp, S.W. Lee, and D.K. Wehe. Icp regis-
tration using invariant features. Pattern Analysis and
Machine Intelligence, IEEE Transactions on, 24(1):90–
102, 2002.

[19] Demetri Terzopoulos, Andrew Witkin, and Michael
Kass. Constraints on Deformable Models: Recovering
3D Shape and Nonrigid Motion. Artificial Intelligence,
1988.

	Introduction
	Previous work
	Probabilistic model for observations
	Inference
	Features
	Real-time algorithm
	Initialization
	Rope
	Surfaces

	Software implementation
	Experimental results
	Future work
	Conclusion

