
Finding Locally Optimal, Collision-Free
Trajectories with Sequential Convex Optimization

John Schulman, Jonathan Ho, Alex Lee, Ibrahim Awwal, Henry Bradlow and Pieter Abbeel

Abstract—We present a novel approach for incorporating
collision avoidance into trajectory optimization as a method of
solving robotic motion planning problems. At the core of our
approach are (i) A sequential convex optimization procedure,
which penalizes collisions with a hinge loss and increases the
penalty coefficients in an outer loop as necessary. (ii) An efficient
formulation of the no-collisions constraint that directly considers
continuous-time safety and enables the algorithm to reliably solve
motion planning problems, including problems involving thin and
complex obstacles.

We benchmarked our algorithm against several other mo-
tion planning algorithms, solving a suite of 7-degree-of-freedom
(DOF) arm-planning problems and 18-DOF full-body planning
problems. We compared against sampling-based planners from
OMPL, and we also compared to CHOMP, a leading approach
for trajectory optimization. Our algorithm was faster than the
alternatives, solved more problems, and yielded higher quality
paths.

Experimental evaluation on the following additional problem
types also confirmed the speed and effectiveness of our approach:
(i) Planning foot placements with 34 degrees of freedom (28 joints
+ 6 DOF pose) of the Atlas humanoid robot as it maintains
static stability and has to negotiate environmental constraints.
(ii) Industrial box picking. (iii) Real-world motion planning for
the PR2 that requires considering all degrees of freedom at the
same time.

I. INTRODUCTION

Trajectory optimization algorithms have two roles in robotic
motion planning. First, they can be used to smooth and shorten
trajectories generated by some other method. Second, they can
be used to plan from scratch: one initializes with a trajectory
that contains collisions and perhaps violates constraints, and
one hopes that the optimization converges to a high-quality
trajectory satisfying constraints. Using an optimization algo-
rithm to plan from scratch is an especially attractive option
in problems with many degrees of freedom (DOF), since the
computation time scales favorably with the number of DOF.

Two of the key ingredients in trajectory optimization for
motion planning are (1) the numerical optimization method,
and (2) the method of checking for collisions and penalizing
them. For numerical optimization, we use sequential convex
optimization, with `1 penalties for equality and inequality
constraints. This approach involves solving a series of con-
vex optimization problems that approximate the cost and
constraints of the true problem, which is non-convex. For
collisions, we compute signed distances using convex-convex
collision detection, and we ensure the continuous-time safety
of a trajectory by considering the swept-out volume. These two
aspects of our approach are complementary, since our collision
checking method yields a polyhedral approximation of the free

Saturday, February 2, 13

Fig. 1. Several problem settings were we have used our algorithm for motion
planning. Top left: planning an arm trajectory for the PR2 in simulation, in a
benchmark problem. Top right: PR2 opening a door with a full-body motion.
Bottom left: industrial robot picking boxes, obeying an orientation constraint
on the end effector. Bottom right: humanoid robot model (DRC/Atlas) ducking
underneath an obstacle while obeying static stability constraints.

part of configuration space, which can be directly incorporated
into the convex optimization problem that is solved at each
iteration of the optimization.

The first advantage of our approach is speed. Our imple-
mentation solves typical arm planning problems in around
100 − 200 ms and solves problems involving many more
degrees of freedom in under a second. This is largely enabled
by our novel formulation of the the collision penalty, which
guarantees safety in continuous time by considering swept-
out volumes. This cost formulation has little computational
overhead in collision checking and allows us to use a sparsely
sampled trajectory. The second advantage of our approach
is its reliability—it solves a surprisingly large fraction of
planning problems. In our experiments, our algorithm solved
a larger fraction of problems than any of the sampling-based
planners, which were given a ten second time limit. The
third advantage of our approach regards path quality: once
the trajectory is free of collisions, our approach will treat
collision avoidance as a hard constraint (i.e., keep a certain
safe distance from obstacles.) Our algorithm will converge to
a locally optimal solution subject to this constraint, without
compromising the other objective criteria. The fourth advan-
tage of our approach is flexibility: new constraints and cost

terms can easily be added to the problem since the underlying
numerical optimization method is numerically robust, and it
can deal with initializations that are deeply infeasible.

We performed a quantitative comparison between our al-
gorithm and several open-source implementations of motion
planning algorithms, including sampling based planners from
OMPL [?], as well as a recent implementation of CHOMP.
Overall, our algorithm was not only faster than the alternatives,
but it solved a larger fraction of the problems. (All planners
were given a ten second time limit.)

We have successfully used our algorithm on high-DOF
problems in the real world involving a mobile robot (PR2)
and sensor data. We solve problems where we simultaneously
need to plan for two arms along with the base and torso.

We also validated our approach on a very high-DOF prob-
lem: planning foot placements with 28 degrees of freedom (+
6DOF pose) of the Atlas humanoid robot as it maintains static
stability and avoid collisions.

Videos corresponding to the results described here are
available at the website [2].

II. RELATED WORK

Optimizing over trajectories is one of the fundamental ideas
of optimal control, especially the direct methods, which solve
for a sequence of states and controls [3]. In the domain
of robotics, the set of collision-free configurations is highly
non-convex, and collision checking is usually computation-
ally expensive, making trajectory optimization challenging.
Khatib proposed the use of potential fields for avoiding
obstacles, including moving ones [12]. Warren [27] suggested
using a global potential field to push the robot away from
configuration-space obstacles, starting with a trajectory that
contained collisions. Quinlan and Khatib [21] suggested lo-
cally approximating the free part of configuration space as a
union of spheres around the current trajectory as part of a
local optimization that tries to shorten the trajectory. Brock
and Khatib [4] improved on this idea, enabling trajectory
optimization on paths of a robot in 3D, by using the Jacobian
to map distances from task space into configuration space.

CHOMP (Covariant Hamiltonian Optimization for Motion
Planning) is a set of ideas for how to formulate the objective in
robotic motion planning problems and how to perform the nu-
merical optimization [22, 28?]. The most notable features of
their approach are (1) using trajectory costs that are invariant to
time parameterization of the trajectory, (2) using pre-computed
signed distance fields for collision checking, (3) using pre-
conditioned gradient descent for numerical optimization, with
projections to enforce constraints. While the motivation for
the presented work is very similar to the motivation behind
CHOMP (and, indeed, CHOMP is the most closely related
prior art), our algorithm differs fundamentally in many ways,
and we will discuss the relative merits between our approach
and CHOMP in the Discussion section.

Other recent work on robot trajectory optimization for (typi-
cally) kinematic motion planning includes STOMP (Stochastic
Trajectory Optimization for Motion Planning), which uses a

gradient-free, stochastic scheme for optimization [11]; and
ITOMP (Incremental trajectory optimization for real-time re-
planning in dynamic environments), which deals with dynamic
obstacles and real-time replanning [?].

Some recent work in robotics uses sequential quadratic
programming for trajectory optimization and incorporates col-
lision avoidance as constraints, in a similar way to this work.
Lampariello et al. [14] incorporate signed distances between
polytopes as inequality constraints in an optimal control prob-
lem. Unlike this work, they don’t consider continuous-time
collision checking or deal with trajectories that start deeply in
collision (for which we resort to a penalty method.) Werner et
al. use sequential quadratic programming to optimize walking
trajectories, also incorporating obstacle avoidance as hard
constraints, along with stability constraints [?]. Finally, there
recently has been considerable progress in trajectory optimiza-
tion for (complicated) dynamical systems, some of the most
notable results include the ones described by Mordatch et al.
[19], Tassa et al. [25], and Erez and Todorov [8].

III. BACKGROUND: SEQUENTIAL CONVEX OPTIMIZATION

Robotic motion planning problems can be formulated as
non-convex optimization problems, i.e., minimize an objective
subject to inequality and equality constraints:

minimize f(x) (1)
subject to (2)
gi(x) ≤ 0, i = 1, 2, . . . , nineq (3)
hi(x) = 0, i = 1, 2, . . . , neq (4)

where f, gi, hi, are scalar functions.
In kinematic motion planning problems, the optimization is

done over a T×K-dimensional vector, where T is the number
of time-steps and K is the number of degrees of freedom.
Henceforth, we will denote the optimization variables as θ1:T ,
where θt describes the configuration at the tth timestep. To
encourage minimum-length paths, we use the sum of squared
displacements,

f(θ1:T) =

T−1∑
t=1

‖θt+1 − θt‖2. (5)

In problems with dynamics, the optimization might also in-
clude joint torques and contact forces. This paper just con-
siders kinematic problems, but the methods developed can be
straightforwardly extended to find collision-free paths in prob-
lems with dynamic constraints. Besides obstacle avoidance,
common inequality constraints in motion planning problems
include joint limits (which are simply bound constraints on
the variables), speed limits (in Cartesian space or joint space),
and static stability constraints. Common equality constraints
include the end-effector pose (i.e., reach a target pose at the
end of the trajectory) and orientation constraints (keep a held
object upright). We will discuss some of these constraints in
Section VII.

Sequential convex optimization solves a non-convex op-
timization problem by repeatedly constructing a convex

subproblem—an approximation to the problem around the
current iterate x. The subproblem is used to generate a step
∆x that makes progress on the original problem. Two key
ingredients of a sequential convex optimization algorithm are
as follows: (1) a method for constraining the step to be small,
so the solution vector remains within the region where the ap-
proximations are valid; (2) a strategy for turning the infeasible
constraints into penalties, but eventually ensuring that all of
the constraint violations are driven to zero. For (1), we use a
trust region (a box constraint around the current iterate). For
(2) we use `1 penalties: each inequality constraint gi(x) ≤ 0
becomes the penalty |gi(x)|+, where |x|+ = max (x, 0); each
equality constraint hi(x) = 0 becomes the absolute value
penalty |hi(x)|. In both cases, the penalty is multiplied by
some coefficient µ, which is adjusted during the optimization
to ensure that the constraint violation is driven to zero. Note
that `1 penalties are non-differentiable but convex, and convex
optimization algorithms can efficiently minimize them. Our
implementation uses a variant of the classic `1 penalty method
[20], which is described in Algorithm 1.

In the outer loop (PenaltyIteration) we increase the penalty
coefficient µ until all the constraints are satisfied, terminat-
ing when the coefficient exceeds some threshold. The next
loop (ConvexifyIteration) is where we repeatedly construct
a convex approximation to the problem and then optimize
it. In particular, we approximate the objective and inequality
constraint functions by convex functions that are compatible
with a quadratic program (QP) solver, and we approximate
the nonlinear equality constraint functions by affine functions.
The nonlinear constraints are incorporated into the problem as
penalties, while the linear constraints are directly imposed in
the convex subproblems. The next loop (TrustRegionIteration)
is like a line search; if the true improvement (TrueImprove)
to the non-convex merit functions (objective plus constraint
penalty) is a sufficiently large fraction of the improvement to
our convex approximations (ModelImprove), then the step is
accepted. (Usually we only need one iteration.)

The approach of using `1 penalties is called an exact penalty
method, because if we multiply the penalty by a high enough
coefficient, then the minimizer of the penalized problem is
exactly equal to the minimizer of the constrained problem.
This is in contrast with the typical `2 penalty method that
penalizes squared error, i.e., gi(x) ≤ 0 → (|gi(x)|+)2 and
hi(x) = 0 → hi(x)2. `1 penalty methods give rise to
numerically-stable algorithms that drive the error to zero. Note
that this procedure updates the penalty coefficients in a generic
way, so one does not need to tune them when setting up a new
problem.

Note that the objective we are optimizing contains non-
smooth terms like |a ·x+b| and |a ·x+b|+ However, the sub-
problems solved by our algorithm are quadratic programs—a
quadratic objective subject to affine constraints. Using a well-
known trick, we accommodate these non-smooth terms while
keeping the objective quadratic by adding auxilliary (slack)
variables. To add term term |a ·x+ b|+, we add slack variable

Algorithm 1 `1 penalty method for sequential convex opti-
mization.
Parameters:

µ0: initial penalty coefficient
s0: initial trust region size
c: step acceptance parameter
τ+, τ−: trust region expansion and shrinkage factors
k: penalty scaling factor
ftol, xtol: convergence thresholds for merit and x
ctol: constraint satisfaction threshold

Variables:
x current solution vector
µ penalty coefficient
s trust region size

1: for PenaltyIteration = 1, 2, . . . do
2: for ConvexifyIteration = 1, 2, . . . do
3: f̃ , g̃, h̃ = ConvexifyProblem(f, g, h)
4: for TrustRegionIteration = 1, 2, . . . do

5: x← arg min
x

f̃(x) + µ

nineq∑
i=1

|g̃i(x)|+ + µ

neq∑
i=1

|h̃i(x)|

subject to trust region and linear constraints
6: if TrueImprove /ModelImprove > c then
7: s← τ+ ∗ s . Expand trust region
8: break
9: else

10: s← τ− ∗ s . Shrink trust region
11: if s < xtol then
12: goto 15
13: if converged according to tolerances xtol or ftol then
14: break
15: if constraints satisfied to tolerance ctol then
16: break
17: else
18: µ← k ∗ µ

t and impose constraints

0 ≤ t
a · x+ b ≤ t (6)

Clearly, at the optimal solution, t = |a · x+ b|+ Similarly, to
add the term |a · x + b|, we add s + t to the objective and
impose constraints

0 ≤ s, 0 ≤ t
s− t = a · x+ b (7)

At the optimal solution, s = |a · x+ b|+, t = | − a · x− b|+,
so s+ t = |a · x+ b|.

IV. DISCRETE-TIME NO-COLLISIONS CONSTRAINT

This paragraph introduces some notation. A,B,O are labels
for rigid objects, each of which is a link of the robot or
an obstacle. The set of points occupied by these objects are
denoted by calligraphic letters A,B,O ⊂ R3. We sometimes
use a superscript to indicate the coordinate system of a point

or a set of points. Aw ⊂ R3 denotes the set of points in world
coordinates occupied by A, whereas AA denotes the set of
points in a coordinate system local to object A. The poses of
the objects A,B are denoted as Fw

A , F
w
B , where Fw

A is a rigid
transformation that maps from the local coordinate system to
the global coordinate system.

Our method for penalizing collisions is based on the notion
of minimum translation distance, common in collision detec-
tion [9]. The distance between two sets A,B ⊂ R3, which is
nonzero for non-intersecting sets, is defined as

dist(A,B) = inf{‖T‖
∣∣ (T +A) ∩ B 6= ∅} (8)

Informally, it’s the length of the smallest translation T that
puts the shapes in contact. The penetration depth, which is
nonzero for overlapping shapes, is defined analogously as the
minimum translation that takes two shapes out of contact:

penetration(A,B) = inf{‖T‖
∣∣ (T +A) ∩ B = ∅} (9)

The signed distance is defined as follows:

sd(A,B) = dist(A,B)− penetration(A,B) (10)

Note that these concepts can also be defined using the notion
of a configuration space obstacle and the Minkowski difference
between the shapes—see e.g. [9].

A

B

A
BT

pA

pB

T
pA

pB

sd > 0 sd < 0

Tuesday, January 29, 13

Fig. 2. Minimal translational distance and closest points.

The distance between two shapes can be calculated by the
Gilbert-Johnson-Keerthi (GJK) algorithm [10]. The penetra-
tion depth is calculated by a different algorithm, the Expanding
Polytope Algorithm (EPA) [26]. One useful feature of these
two algorithms, which makes them so generally applicable, is
that they represent an object A by its support mapping, i.e., a
function that maps vector v to the point in A that is furthest
in direction v:

sA(v) = arg max
x∈A

v · x (11)

This representation makes it possible to describe shapes im-
plicitly without constructing polyhedra or explicit representa-
tions of their surfaces. We will exploit this fact to efficiently
check for collisions against swept-out volumes.

Two objects are non-colliding if the signed distance is
positive. We will typically want to ensure that the robot has

a safety margin dsafe. Thus, we want to enforce the following
constraints at each timestep

sd(Ai,Oj) ≥ dsafe ∀i ∈ {1, 2, . . . , Nlinks},
∀j ∈ {1, 2, . . . , Nobstacles}

(obstacle collisions)
sd(Ai,Aj) ≥ dsafe ∀i, j ∈ {1, 2, . . . , Nlinks} (12)

(self collisions)

where {Ai} is the collection of links of the robot, and {Oj}
is the set of obstacles.

These constraints can be relaxed to the following `1 penalty

Nlinks∑
i=1

Nobs∑
j=1

|dsafe − sd(Ai,Oj)|+

+

Nlinks∑
i=1

Nlinks∑
j=1

|dsafe − sd(Ai,Bj)|+ (13)

A single term of this penalty function is illustrated in Figure 3.
After we linearize the signed distance (described below), this
cost can be incorporated into a quadratic program (or linear
program) using the trick from Equation 6.

The collision penalty 13 looks prohibitively expensive to
evaluate because of the double sum. However, most of the
terms are zero and correspond to pairs of faraway objects,
and our optimization does not explicitly represent these terms.
The collision penalty (or equivalently, the constraint violations
in Equation 12) can be computed by querying a collision
checker for all pairs of nearby objects in the world. To locally
approximate this cost around the current iterate, we query the
collision checker for all pairs of objects with distance smaller
than dcheck between them, where dcheck > dsafe. It is important
for convergence that dcheck is strictly greater than dsafe, so that
our local approximation to the cost function includes terms for
pairs of objects that are currently safely out of collision (with
zero penalty). This way, the local approximation is aware of
this pair of nearby objects when generating a step, i.e. solving
the QP subproblem.

penalty

dcheckdsafe0
sd

Saturday, February 2, 13

Fig. 3. Hinge penalty for collisions

We can form a linear approximation to the signed distance
using the robot Jacobian and the notion of closest points. A
similar calculation is performed in dynamics simulations to
resolve contact constraints. LetAA,BB ⊂ R3 denote the space
occupied by A and B in local coordinates, and let pA ∈ AA

and pB ∈ BB denote the local positions of contact points. Fw
A

and Fw
B denote the objects’ poses.

To define closest points and our derivative approximation,
first note that the signed distance function is given by the
following formula, which applies to both the overlapping and
non-overlapping cases:

sd({A,Fw
A }, {B,Fw

B }) = max
‖n̂‖=1

min
pA∈A,
pB∈B

n̂ · (Fw
ApA − Fw

BpB)

(14)

The closest points pA,pB and normal n̂ are defined as a triple
that achieve the optimum described in (14). Equivalently, the
contact normal n̂ is the direction of the minimal translation T
(as defined in Equations (8) and (9)), and pA and pB are a
pair of points (expressed in local coordinates) that are touching
when we translate A by T . See Figure 2 for illustration.

Let’s assume that the pose of A is parameterized by vector
θ (e.g., the robot’s joint angles), and B is stationary. (This
calculation can be straightforwardly extended to the case
where both objects vary with θ, which is necessary for dealing
with self-collisions.) Then we can linearize the signed distance
by assuming that the local positions pA,pB are fixed, and that
the normal n is also fixed, in Equation (14).

We first linearize the signed distance with respect to the
positions of the closest points:

sdAB(θ) ≈ n̂ · (Fw
A (θ)pA − Fw

BpB) (15)

By calculating the Jacobian of pA with respect to the degrees
of freedom θ, we can linearize this signed distance expression
at θ0:

∇θ sdAB(θ)

∣∣∣∣
θ0

≈ n̂TJpA
(θ0)

sdAB(θ) ≈ sdAB(θ0) + n̂TJpA
(θ0)(θ − θ0)

(16)

The above expression allows us to form a local approximation
of one collision cost term with respect to the robot’s degrees of
freedom. This approximation is used for every pair of nearby
objects returned by the collision checker.

Note that this formula, which assumes that the normal
n̂ and the closest points are fixed, is correct to first order
in non-degenerate situations involving polyhedra. However,
in degenerate cases involving face-face contacts, the signed
distance is non-differentiable as a function of the poses of
the objects, and the above formula deviates from correctness.
Empirically, the optimization does not seem to get stuck at the
points of non-differentiability.

V. ENSURING CONTINUOUS-TIME SAFETY

The preceding section describes how to formulate a col-
lision constraint or penalty that ensures that a given robot
configuration θ is not in collision. We can use this constraint
or penalty to ensure that the robot is collision-free at each
waypoint of a discretely-sampled trajectory. These waypoints
will need to be converted to a continuous-time trajectory, e.g.
by linear interpolation or cubic splines. However, the resulting
continuous-time trajectory might have collisions between the
waypoints—see Figure 4.

We can modify the collision penalty from Section IV to
give a cost that enforces the continuous-time safety of the
trajectory (though it makes a geometric approximation). It
is only moderately more computationally expensive than the
discrete-time collision cost of the previous section.

T

B

A(t)

A(t+1)

Friday, February 1, 13

Fig. 4. Illustration of swept volume, which we use in our continuous collision
cost.

Consider a moving object A and a static object B, for
0 ≤ t ≤ 1. The motion is free of collision if the swept-
out volume ∪tA(t) does not intersect B. First suppose that
A undergoes only translation, not rotation. (We will consider
rotations below.) Then the swept-out volume is the convex hull
of the initial and final volumes [26]⋃

t∈[0,1]

A(t) = convhull(A(t),A(t+ 1)) (17)

Thus we can use the same sort of collision cost we described
in Section IV, but now we calculate the signed distance
between the swept-out volume of A and the obstacle B:

sd(convhull(A(t),A(t+ 1)),B) (18)

It turns out that we don’t have to calculate the convex
hull of shapes A(t), A(t+ 1) to perform the necessary signed
distance computation, since (as noted in Section IV) the signed
distance cost can be calculated using the support mappings.
In particular, the support mapping is given by

sconvhull(C,D)(v) =

{
sC(v) if sC(v) · v > sD(v) · v
sD(v) otherwise

(19)

Calculating the gradient of the swept-volume collision cost
is slightly more involved than discrete case described in
Equations (15) and (16). Let’s consider the case where object
A is moving and object B is stationary, as in Figure 4. Let’s
suppose that A and B are polyhedral. Then the closest point
pswept ∈ convhull(A(t), A(t + 1)) lies in one of the faces
of this polytope. convhull(A(t), A(t+ 1)) has three types of
faces: (1) all the vertices are from A(t), (2) all of the vertices
are from A(t+ 1), and (3) otherwise. Cases (1) and (2) occur
when the deepest contact in the interval [t, t+1] occurs at one
of the endpoints, and the gradient is given by the discrete-time
formula. In case (3), we have to estimate how the closest point
varies as a function of the poses of A at times t and t+ 1.

We use an approximation for case (3) that is compu-
tationally efficient and empirically gives accurate gradient

estimates. It is correct to first order in non-degenerate 2D
cases, but it is not guaranteed to be accurate in 3D. Let
pswept, pB , denote the closest points and normals between
convhull(A(t), A(t+1)) and B, respectively, and let n̂ be the
normal pointing from B into A.

1) Find supporting vertices p0 ∈ A(t) and p1 ∈ A(t+ 1)
by taking the support map of these sets in the normal
direction −n̂.

2) Our approximation assumes that the contact point pswept

is a fixed convex combination of p0 and p1. In some
cases, p0, pswept, and p1 are collinear. To handle the
other cases, we set

α =
‖p1 − pswept‖

‖p1 − pswept‖+ ‖p0 − pswept‖
(20)

We make the approximation

pswept(θ) ≈ αp0 + (1− α)p1 (21)

3) Calculate the Jacobians of those points

Jp0
(θt

0) =
d

dθt
p0, Jp1

(θt+1
0) =

d

dθt+1
p1 (22)

4) Similarly to Equation 16, linearize the signed distance
around the trajectory variables at timesteps t and t+ 1

sdAB(θt,θt+1) ≈ sdAB(θt
0,θ

t+1
0)

+αn̂TJp0
(θt

0)(θt − θt
0)

+(1− α)n̂TJp1(θt+1
0)(θt+1 − θt+1

0)

(23)

The preceding discussion assumed that the shapes undergo
translation only. However, the robot’s links also undergo
rotation, so the convex hull will underestimate the swept-out
volume. This phenomenon is illustrated in Figure 5. We can
calculate a simple upper-bound to the swept-out volume, based
on the amount of rotation. Consider a shape A undergoing
translation T and rotation angle φ around axis k̂ in local
coordinates. Let A(t) and A(t + 1) be the occupied space
at the initial and final times, respectively. One can show that
if we expand the convex hull convhull(A(t), A(t + 1)) by
darc = rφ2/8, where r is the maximum distance from a point
on A to the local rotation axis, then the swept-out volume is
contained inside.

In summary, we can ensure continuous time safety by
ensuring that for each time interval [t, t+ 1]

sd(convhull(A(t),A(t+ 1)),O) > dsafe + darc (24)

One could relax this constraint into a penalty as described
in Section IV, by approximating φ(θt,θt+1). In practice, we
ignored the correction darc, since it was well under 1 cm in all
of the problems we considered.

The method described in this section for continuous-time
collision detection only has a modest performance penalty
versus the discrete-time collision detection, where the slow-
down is because we have to calculate the support mapping
of a convex shape with twice as many vertices. As a result,
the narrow-phase collision detection takes about twice as
long. The upshot is that the continuous collision cost solves

𝑑

𝑟

Fig. 5. Illustration of the difference between swept out shape and convex
hull. The figure shows a triangle undergoing translation and uniform rotation.
The swept-out area is enclosed by dotted lines, and the convex hull is shown
by a thick gray line.

problems with thin obstacles where the discrete-time cost fails
to get the trajectory out of collision. An added benefit is that
we can ensure continuous-time safety while parametrizing the
trajectory with a small number of waypoints, reducing the
computational cost of the optimization.

VI. MOTION PLANNING BENCHMARK

Fig. 6. Scenes in our benchmark tests. Left and center: two of the scenes
used for the arm planning benchmark. Right: a third scene, showing the path
found by our planner on an 18-DOF full-body planning problem.

We compared our algorithm to several other motion plan-
ning algorithms on a collection of problems in simulated
environments. Our evaluation is based on four test scenes
included with the MoveIt! distribution that is part of the ROS
motion planning libraries [5?]. We used the bookshelves,
countertop, industrial, and tunnel scenes for the evaluation
because they were the most complex. The set of planning
problems was created as follows. For each scene we set up
the robot in a number of diverse configurations. Each pair of
configurations yields a planning problem. We assume that the
end configuration is fixed, as opposed to some other constraint
like the gripper pose.

Our tests include 198 arm planning problems and 96 full-
body problems. We compared to the top-performing plan-
ning algorithms from OMPL / MoveIt. They include a bi-
directional RRT [13] and a variant of KPIECE [24]. All of
these algorithms were run using default parameters and post-
processed by the default smoother used by MoveIt. We also
compared to the latest implementation of CHOMP on the arm
planning problems. This version is not yet publicly available
at the time of publication, but it was made available to us
by the authors [28]. We did not use CHOMP for the full-body

planning problems because we did not have the documentation
or data files we would need to run these experiments on the
PR2.

We tested both our algorithm and CHOMP under two
conditions: single initialization and multiple initializations. For
the single initialization, we used a straight line in configuration
space from the start to the goal. For multiple initializations,
we used the following methodology.
• For the arm planning problems, prior to performing

these experiments we manually selected four waypoints
W1,W2,W3,W4 in joint space. These waypoints were
fixed for all scenes and problems. Let S and G denote the
start and goal states for a planning problem. Then we used
the four initializations SW1G, SW2G, SW3G, SW4G,
which linearly interpolate between S and Wi for the first
T/2 time-steps, and then linearly interpolate between Wi

and G for the next T/2 timesteps.
• For the full-body planning problems, we randomly sam-

pled the environment for base positions (x, y, θ) with the
arms tucked. After finding a collision-free configuration
W of this sort, we initialized with the trajectory SWG
as described above. We generated up to 5 initializations
this way. Note that even though we initialize with tucked
arms, the optimization typically untucks the arms to
improve the cost.

A few more implementation details for our algorithm are
given below:
• Our current implementation of the continuous-time col-

lision cost does not consider self-collisions, but we pe-
nalized self-collisions at discrete times as described in
IV.

• For collision checking, we took the convex hull of every
mesh of the robot. Each link is made of one or more
meshes. We used the Bullet collision checker [7].

• The termination conditions we used for the optimization
were (i) maximum of 40 iterations, (ii) minimum merit
function improvement ratio of 10−4, (iii) minimum trust
region size 10−4. Conditions (ii) and (iii) occurred in the
vast majority of these cases, indicating good convergence.

• The arm trajectories have 11 timesteps, and the full-body
trajectories have 41 timesteps.

CHOMP was run for five seconds for each initialization,
with Hamiltonian Monte Carlo enabled. We chose this duration
because the success rate on this benchmark sharply decreased
when it was run for less than 3 seconds per initialization.
OMPL was limited to 30 seconds on full-body scenes.

The results for arm planning are shown in Table I. The
results for full-body planning are shown in Table II. Our algo-
rithm with multiple initializations substantially outperformed
the other approaches in both sets of problems. The path lengths
were normalized by dividing by the shortest path length for
that problem (across all planners).

VII. OTHER APPLICATIONS

Trajectory optimization is widely applicable to problems
involving a variety of interesting constraints, including non-

Fig. 7. Atlas robot in simulation walking across the room and pressing a
button. Each footstep was planned separately. Five states out of a long motion
are shown.

holonomic and dynamic constraints.

A. Humanoid walking: static stability

We have validated that our approach scales to a high-DOF
situation; planning a statically stable walking motion for the
Atlas humanoid robot model. The degrees of freedom include
all 28 joints and the 6 DOF pose, where we used the axis–angle
(exponential-map) representation for the orientation. Walking
is divided into four phases (1) left foot planted, (2) both feet
planted (3) right foot planted, (4) both feet planted. We impose
the constraint that the center of mass constantly lies above the
convex hull of the planted foot or feet. That is, the convex
support polygon is represented as an intersection of k half-
planes, yielding k inequality constraints

aixcm(θ) + biycm(θ) + ci ≤ 0, i ∈ {1, 2, . . . , k} (25)

where the ground-projection of the center of mass (xcm, ycm)
is a nonlinear function of the robot’s configuration.

Using this approach, we plan a sequence of steps across a
room, as shown in figure 7. Each step is planned separately
using the phases described above. The robot is able to obey
these stability and footstep placement constraints while duck-
ing under an obstacle.

B. Pose constraints

Our approach can readily handle kinematic constraints, for
example, the constraint that a redundant robot’s gripper is at a
certain pose at the end of the trajectory. A pose constraint can
be formulated as follows. Let Ftarg denote the target pose
of the gripper, and let Fcur(θ) be the current pose. Then
F−1targFcur(θ) gives the pose error, measured in the frame of
the target pose. This pose error can be represented as the six-
dimensional error vector

h(θ) = (tx, ty, tz, rx, ry, rz) (26)

where (tx, ty, tz) is the translation part, and (rx, ry, rz) is the
axis-angle representation of the rotation part.

One can also impose partial orientation constraints. For
example, consider the constraint that the robot is holding a
box that must remain upright. The orientation constraint is an
equality constraint, namely that an error vector (vwx , v

w
y)(θ)

Trajopt Trajopt-Multi ompl-RRTConnect ompl-LBKPIECE CHOMP-HMC CHOMP-HMC-Multi
success fraction 0.818 0.955 0.854 0.758 0.652 0.833
average time (s) 0.191 0.3 0.615 1.3 4.91 9.27

avg normed length 1.16 1.15 1.56 1.61 2.04 1.97

TABLE I
Results on 198 arm planning problems for a PR2, involving 7 degrees of freedom. Trajopt refers to our algorithm.

Trajopt Trajopt-multi OMPL-RRTConnect OMPL-LBKPIECE
success fraction 0.729 0.875 0.406 0.51
average time (s) 2.2 6.1 20.3 18.7

avg normed length 1.06 1.05 1.54 1.51

TABLE II
Results on 96 full-body planning problems for a PR2, involving 18 degrees of freedom (two arms, torso, and base).

Saturday, February 2, 13

Fig. 8. Several stages of a box picking procedure, in which boxes are
taken from the stack and moved to the side. The box is subject to orientation
constraints.

vanishes. Here, v is a vector that is fixed in the box frame
and should point upwards in the world frame.

Figure 8 shows our algorithm planning a series of motions
that pick boxes from a stack. Our algorithm typically plans
each motion in 30− 50 ms.

VIII. REAL-WORLD EXPERIMENTS

A. Environment preprocessing

One of the main challenges in taking motion planning from
simulation to reality is creating a useful representation of
the environment’s geometry. Depending on the scenario, the
geometry data might be live data from a Kinect or laser range
finder, or it might be a mesh produced by an offline mapping
procedure.

We have successfully used our algorithm with two different
representations of environment geometry: (1) convex decom-
position, and (2) meshes.

The process of going from a surface mesh to a union of con-
vex shapes is called approximate convex decomposition [16].
Convex decomposition is a popular approach for simplifying
geometric models for collision checking and simulation, e.g.
for video games [7]. We used the HACD software of Khaled
Mamou [17], which, in our experience, robustly produced
good decompositions, even on the open meshes we generated
from single depth images.

Our algorithm also can be used directly with mesh data.
The mesh is viewed as a soup of triangles (which are convex
shapes), and we penalize collision between each triangle and
the robot’s links. For best performance, the mesh should first
be simplified to contain as few triangles as possible while
faithfully representing the geometry, e.g. see [6].

Example code for generating meshes and convex decompo-
sitions from Kinect data, and then planning using our software
package Trajopt, is provided in a tutorial at [1].

B. Real-world experiments

We performed several real-world experiments involving a
mobile robot (PR2) to explore and validate two aspects of
our approach: (1) applying it to the “dirty” geometry data
that we get from 3D sensors, and (2) seeing if the full-
body trajectories can be executed, in practice. Our end-to-
end system successfully handled three full-body planning
problems:

1) Grasp a piece of trash on a table and place it in a garbage
bin under a table (one arm + base)

2) Open a door, by following the appropriate pose trajec-
tory to open the handle and push. (two arms + torso +
base)

3) Drive through an obstacle course, where the PR2 must
adjust its torso height and arm position to fit through
overhanging obstacles (two arms + torso + base).

The point clouds we used were obtained by mapping out the
environment using SLAM and then preprocessing the map to
obtain a convex decomposition. Videos of these experiments
are available at the website for this paper [2].

IX. DISCUSSION

While the motivation of this work is similar to CHOMP,
our approach differs from CHOMP in several important di-
mensions, most notably that (1) we use a different approach
for collision detection, and (2) we use a different numerical
optimization scheme.

1) Distance fields versus convex-convex collision checking:
CHOMP uses the Euclidean distance transform—a precom-
puted function on a voxel grid that specifies the distance
to the nearest obstacle, or the distance out of an obstacle.
Typically each link of the robot is approximated as a union of
spheres, since the distance between a sphere and an obstacle
can be bounded based on the distance field. The advantage
of distance fields is that checking a link for collision against
the environment requires constant time and doesn’t depend
on the complexity of the environment. On the other hand,

spheres and distance fields are arguably not very well suited
to situations where one needs to accurately model geometry,
which is why collision-detection methods based on meshes and
convex primitives are more prevalent in applications like real-
time physics simulation, which require speed and accuracy.

One important consideration for trajectory optimization is
how “well-shaped” the objective is. That is, given a trajectory
that contains collisions, how reliably does following the gra-
dient get the trajectory out of collisions, rather than getting
stuck in a bad local optima? Whereas convex-convex collision
detection takes two colliding shapes and computes the minimal
translation to get them out of collision, the distance field (and
its gradient) merely computes how to get each robot point (or
sphere) out of collision; however, two points may disagree
on which way to go. Thus convex-convex collision detection
arguably provides a better local approximation of configuration
space, allowing us to formulate a better shaped objective.

The CHOMP objective is designed to be invariant to
reparametrization of the trajectory. This invariance property of
the objective makes it much better shaped, helping the gradient
pull the trajectory out of an obstacle instead of encouraging it
to jump through the obstacle faster. Our method of collision
checking against the swept-out shape achieves this result in a
completely different way. We did not try scaling our collision
penalty by speed as in the CHOMP objective, but that would
be interesting.

2) SQP versus projected gradient descent: CHOMP uses
(preconditioned) projected gradient descent, i.e., it takes steps
x← Proj(x−A−1∇f(x)), whereas our method uses sequen-
tial quadratic programming (SQP). Taking a projected gradient
step is cheaper than solving a QP. However, these projected
gradient steps don’t incorporate much second-derivative infor-
mation, and projected gradient descent has linear, rather than
quadratic convergence. That said, although we use a second-
order method, we don’t necessarily get quadratic convergence
because we don’t calculate the full Hessian of all terms in
the objective. Another advantage of sequential quadratic pro-
gramming is that it can handle deeply infeasible initializations
using penalties and merit functions, as described in Section
III. We’ll note that about half of the modern software for
generic non-convex optimization uses an SQP variant (e.g.
KNITRO, SNOPT). The remainder uses interior point methods
and augmented Lagrangian methods [15].

So in both numerical optimization and collision detection,
our approach requires more computation per iteration but
generates a subproblem that is a better approximation of the
true problem. Thus our algorithm takes a small number of
iterations to converge (usually 15 or 20), but each iteration is
more expensive; whereas CHOMP has the opposite attributes.
(Though in practice, CHOMP iterations are somewhat expen-
sive because of the larger number of timesteps required to
make it work well.) One could potentially use a different
combination of approaches: gradient descent with convex
collision detection, or SQP with distance fields. However, the
choices are not orthogonal, since if you choose one slow
method and one fast method, you may end up with the worst

of both worlds: expensive iterations and slow convergence.

X. SOURCE CODE AND REPRODUCIBILITY

All of our source code is available as a BSD-licensed open-
source package called Trajopt [1]. Optimization problems can
be constructed and solved using the underlying C++ API or
through Python bindings. Trajectory optimization problems
can be specified in JSON string that specifies the costs,
constraints, degrees of freedom, and number of timesteps. We
are also working on a MoveIt plugin [5] so our software can
be used along with ROS tools.

For robot and environment representation, we use Open-
RAVE, and for collision checking we use Bullet, because of
the high-performance GJK-EPA implementation and collision
detection pipeline. Two different backends can be used for
solving the convex subproblems: (1) Gurobi, a commercial
solver, which is free for academic use; and (2) BPMPD [18],
a free solver, which is included in our software distribution.

The benchmark results presented in this paper can be
reproduced by running scripts provided at the paper’s webpage
[2]. Various examples, including humanoid walking and arm
planning with orientation constraints, are included with our
software distribution [1].

XI. CONCLUSION

We presented a novel algorithm that uses trajectory opti-
mization for robotic motion planning. We benchmarked our
algorithm against sampling-based planners from OMPL and
CHOMP. Our algorithm was faster than the alternatives, solved
a larger fraction of problems, and produced better paths. Aside
from the benchmark, we validated our approach on planning
stepping motions the Atlas humanoid robot, industrial box
picking, and the real PR2 and its sensor data.

XII. ACKNOWLEDGEMENTS

We thank Jeff Trinkle, Sachin Patil, and Dmitry Berenson,
and Nikita Kitaev for insightful discussions and comments
on the paper. We thank Kurt Konolige and Ethan Rublee
from Industrial Perception Inc. for supporting this work and
providing valuable feedback. We thank Ioan Sucan and Sachin
Chitta for help with MoveIt, and we thank Anca Dragan,
Chris Dellin, and Sidd Srinivasa for help with CHOMP. This
research has been funded in part by the Intel Science and
Technology Center on Embedded Computing, by an AFOSR
YIP grant, and by a Sloan Fellowship.

REFERENCES

[1] Webpage for Trajopt software package. URL http://rll.
berkeley.edu/trajopt.

[2] Webpage for this paper. URL http://rll.berkeley.edu/
trajopt/rss.

[3] J.T. Betts. Practical methods for optimal control and
estimation using nonlinear programming, volume 19.
Society for Industrial & Applied Mathematics, 2010.

http://rll.berkeley.edu/trajopt
http://rll.berkeley.edu/trajopt
http://rll.berkeley.edu/trajopt/rss
http://rll.berkeley.edu/trajopt/rss

[4] O. Brock and O. Khatib. Elastic strips: A framework for
motion generation in human environments. The Interna-
tional Journal of Robotics Research, 21(12):1031–1052,
2002.

[5] S. Chitta, I. Sucan, and S. Cousins. Moveit![ROS topics].
Robotics & Automation Magazine, IEEE, 19(1):18–19,
2012.

[6] Paolo Cignoni, Claudio Montani, and Roberto Scopigno.
A comparison of mesh simplification algorithms. Com-
puters & Graphics, 22(1):37–54, 1998.

[7] Erwin Coumanns. Bullet physics library, 2012.
www.bulletphysics.org.

[8] T. Erez and E. Todorov. Trajectory optimization for
domains with contacts using inverse dynamics. In Proc.
IROS, 2012.

[9] C. Ericson. Real-time collision detection. Morgan
Kaufmann, 2004.

[10] E. G. Gilberg, D. W. Johnson, and S. S. Keerthi. A fast
procedure for computing the distance between complex
objects in three-dimensional space. IEEE Journal of
Robotics and Automation, 1988.

[11] M. Kalakrishnan, S. Chitta, E. Theodorou, P. Pastor, and
S. Schaal. STOMP: Stochastic trajectory optimization for
motion planning. In Robotics and Automation (ICRA),
2011 IEEE International Conference on, pages 4569–
4574. IEEE, 2011.

[12] Oussama Khatib. Real-time obstacle avoidance for ma-
nipulators and mobile robots. The international journal
of robotics research, 5(1):90–98, 1986.

[13] James J Kuffner Jr and Steven M LaValle. Rrt-connect:
An efficient approach to single-query path planning. In
Robotics and Automation, 2000. Proceedings. ICRA’00.
IEEE International Conference on, volume 2, pages 995–
1001. IEEE, 2000.

[14] R. Lampariello, D. Nguyen-Tuong, C. Castellini,
G. Hirzinger, and J. Peters. Trajectory planning for
optimal robot catching in real-time. In Robotics and
Automation (ICRA), 2011 IEEE International Conference
on, pages 3719–3726. IEEE, 2011.

[15] S. Leyffer and A. Mahajan. Nonlinear constrained
optimization: methods and software. Argonee National
Laboratory, Argonne, Illinois, 60439, 2010.

[16] J.M. Lien and N.M. Amato. Approximate convex de-
composition of polyhedra. In Proceedings of the 2007
ACM symposium on Solid and physical modeling, pages
121–131. ACM, 2007.

[17] K Mamou and F Ghorbel. A simple and efficient
approach for 3d mesh approximate convex decomposi-
tion. In 16th IEEE International Conference on Image
Processing (ICIP V9), pages 3501–3504, 2009.

[18] Csaba Mészáros. The bpmpd interior point solver for
convex quadratic problems. Optimization Methods and
Software, 11(1-4):431–449, 1999.

[19] I. Mordatch, E. Todorov, and Z. Popovic. Discovery
of complex behaviors through contact-invariant optimiza-
tion. In ACM SIGGRAPH, 2012.

[20] J. Nocedal and S.J. Wright. Numerical optimization.
Springer Verlag, 1999.

[21] S. Quinlan and O. Khatib. Elastic bands: Connecting
path planning and control. In Robotics and Automation,
1993. Proceedings., 1993 IEEE International Conference
on, pages 802–807. IEEE, 1993.

[22] N. Ratliff, M. Zucker, J.A. Bagnell, and S. Srinivasa.
CHOMP: Gradient optimization techniques for efficient
motion planning. In Robotics and Automation, 2009.
ICRA’09. IEEE International Conference on, pages 489–
494. IEEE, 2009.

[23] I.A. Sucan, M. Kalakrishnan, and S. Chitta. Combining
planning techniques for manipulation using realtime per-
ception. In Robotics and Automation (ICRA), 2010 IEEE
International Conference on, pages 2895–2901. IEEE,
2010.

[24] Ioan A Şucan and Lydia E Kavraki. Kinodynamic
motion planning by interior-exterior cell exploration. In
Algorithmic Foundation of Robotics VIII, pages 449–464.
Springer, 2009.

[25] Y. Tassa, T. Erez, and E. Todorov. Synthesis and stabi-
lization of complex behaviors through online trajectory
optimization. In Proc. IROS, 2012.

[26] G. van den Bergen. A fast and robust GJK implementa-
tion for collision detection of convex objects. Journal of
Graphics Tools, 4(2):7–25, 1999.

[27] C.W. Warren. Global path planning using artificial
potential fields. In Robotics and Automation, 1989.
Proceedings., 1989 IEEE International Conference on,
pages 316–321. IEEE, 1989.

[28] M. Zucker, N. Ratliff, A.D. Dragan, M. Pivtoraiko,
M. Klingensmith, C.M. Dellin, J.A. Bagnell, and S.S.
Srinivasa. CHOMP: Covariant hamiltonian optimization
for motion planning. International Journal of Robotics
Research, 2012.

	Introduction
	Related work
	Background: Sequential Convex Optimization
	Discrete-time no-collisions constraint
	Ensuring Continuous-Time Safety
	Motion planning benchmark
	Other Applications
	Humanoid walking: static stability
	Pose constraints

	Real-world Experiments
	Environment preprocessing
	Real-world experiments

	Discussion
	Distance fields versus convex-convex collision checking
	SQP versus projected gradient descent

	Source code and reproducibility
	Conclusion
	Acknowledgements

